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Preface

The second edition of these nuclear astrophysics notes has been

divided into two parts:

A. Nuclear Physics

B. Stellar Physics

Since the first edition of these lecture notes was compiled, a series

of lecture notes and reprints of recent work on the advanced stages of

stellar evolution has been published (A.G.W. Cameron, W.D. Arnett,

A. Gilbert, C.J. Hansen, J.W. Truran, and S. Tsuruta, "High Density

Astrophysics," in High Ener_ Astrophysics, Vol. III, ed. by C. DeWitt,

E. Schatzman, and P. Veron, Gordon and Breach, New York, 1967). The

present set of lecture notes is intended to supplement these and deals

with basic nuclear physics and the earlier stages of stellar evolution.

Part A is entirely new and Part B is selected from the first edition

with substitution of new material for the chapter on abundances. Since

most of Part B is now several years old, it should be read only for

the benefit of the basic ideas involved. More recent literature should

be consulted for the best values of nuclear reaction rates, stellar

models, and similar material.

Attention is also called to a survey paper: "Stellar Evolution:

A Survey With Analytic Models," by Robert F. Stein, in Stellar Evolution,

ed. by R.F. Stein and A.G.W. Cameron, Plenum Press, New York, 1966. This

is very useful for obtaining an understanding of the basic nature of

stellar evolution where there is not too much concern for accurate

numerical details.
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Part A. NUCLEARPHYSICS

i. Nuclear Forces

Much work has been done in the last few decades Jn

connection with nuclear forces. Some of it has been an

intensive study into the kinds of interactions into which

individual nucleons can enter in collisions at high energy.

These techniques have been rather successful, considering

the difficulties in accounting for some of the detailed

properties of nuclear matter and even of nuclei themselves.

In the main, one puts into such considerations the measured

interaction properties of nuclear collisions at high ener-

gies, the different phase shifts that correspond to the

various partial waves which can participate in the inter-

actions, and so on. So in no sense can we say that we

understand and can easily predict the properties of nuclear

forces in the same sense that we say we understand electro-

magnetic field phenomena, where we believe that we know

the basic laws, even if perhaps we don't understand the

deepest meaning of the laws as well as we might like. Thus

in the case of nuclear forces we don't know even what the

basic laws are; so the subject is necessarily on a largely

empirical basis which perhaps ,will disappear gradually as

I
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high energy experiments continue to be performed. Never-

theless, it is not likely that any very simple description

of nuclear forces will be developed, because nuclear forces

depend on so many different things, as we shall see.

A% low energies, principal sources of information come from the

measured _ropertie_ of the deuteron and from n-p _nd _-p scatter_n&

experiments; so first we examine some properties of the deuteron. The

magnetic moment of the proton is _p = 2.7<92?0 nuclear

magnetons. The nuclear magneton, M_ , is similar to the Bohr

e_ but with m ,
magneton defined for the electron, M B - 2m c ' p

e

the mass of the proton, replacing m , the mass of the
e

electron. The' magnetic moment of the neutron is

_n = -1.91316 _N and adding these together, we have

_p + Wn = 0.87975 _

Adding _p and _n together this way assumes that the spin

of the neutron and proton are parallel. The measured

magnetic moment of the deuteron turns out to be 0.857395 MN ,

and even though this is not exactly Up + u n, it is nearly

the same. Also, the spin of the deuteron is known from

experiment to be I, in units of *, and from these two

considerations we may say that the ground state of the

deuteron is given to a good approximation by a neutron and



proton bound together with their spins parallel. Then, to

a good approximation, one can describe the state in standard

3S
spectroscopic notation as a 1 state. We denote the state

by "S" because the orbital angular momentum, L, of the

neutron and proton in the deuteron is zero; the "i" means

that the total angular momentum, the vector sum of the spin

and orbital angular momenta, is 1 in units of _, and the

"3" is twice the nuclear spin plus i: 2xl+l = 3. We say

that the neutron-proton system has no orbital angular

momentum because we have accounted for all the measured

angular momentum of the deuteron in terms of the spin of

the neutron and proton, leaving no room for orbital angular

momentum.

However the situation is not quite this simple because

the deuteron has been found to have a quadrupole moment

-27 2
Q = 2.74 x I0 cm The quadrupole moment measures the

departure from spherical symmetry of the charge distribution

of an object. It is worthwhile to compare this with the

area to be associated with the deuteron. Using some

decent wave function for the ground state, the deuteron

radius is found to be relatively large, R _ 4.31 x 10 -13 cm

and so the cross-sectional area, uR 2 is about 600 x 10 -27 2cm ,
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P

2

and so even though the measured quadrupole moment is finite,

it is relatively small. But the fact that a quadrupole

moment exists for an apparently simple two body system

indicates that the nuclear forces acting cannot be completely

central forces: there must be some noncentral character to

these nuclear forces_

To account for the existence of Q, one finds that it

is necessary to mix into the deuteron ground state a

fraction of noncentral forces, called tensor forces, which

would correspond to a non-zero angular momentum of the

deuteron. Since parity conservation is violated in nuclear

physics only in weak interactions, _such as beta dec_ay, we

cannot allow any admixture of L = i or P state into the

ground state. If we had some fraction of P wave, then

we could represent the ground state wave function for the

deuteron as

:_ = _s + _p

but the parity of _s is even, while that of _p is odd; so

has no definite parity and is not a suitable wave function

for the ground state of deuterium. Thus we are compelled

to go up to L = 2 or D wave, in this case ]D_ and the



deuteron ground state turns out to be about 96% of 3S1 and

4_ JDI .

Now the deuteron has only one bound state, the ground

sta_:e; no bound excited states exist. It is easy to

imagine a simple neutron-proton state other than the ground

state; one example is a neutron and proton with spins opposed,

1Sa state But the singlet state of the deuteron is not
0

observed to be bound, and therefore corresponds to a state

in the continuum of the neutron-proton states. The fact

that these two states of the deuteron behave quite differently,

one being bound and the other unbound, indicates that

nuclear forces are spindependent. This leads to the

inclusion Of such objects as spin exchange operators into

nuclear theory.

Apart from the deuteron, considering nucleon-nucleon

forces in general, one significant feature emerging from

nuclear studies is that for the same quantum state, nuclear

forces are charge independent. Typical examples of mirror

nuclei include the pairs

10Ne21 iNa21' 1

Na 23 12Mg23;ii

12Mg 25 125, 13 A ;

etc.
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These pairs are mirror in the sense that whatever configu-

ration the neutrons and protons one of the pairs has, the

21

other has the reverse configuration. For example 10Ne

llNa 21has ten protons and eleven neutrons; has eleven

iNa21 21protons and ten neutrons. We can get 1 from 10Ne r

_L_e same quantumby replacing a neutron with a proton in _

state which is a part of the ground state configuration.

One of the things which contributes to the mass of a

nucleus is the electrostatic energy corresponding to con-

finement of the nuclear protons within nuclear dimensions.

This energy is called the electrostatic or Coulomb energy

of the nucleus: one must do work in bringing charges up

from infinity into the nucleus and the total work done is

the Coulomb energy of the nucleus. It is apparent that

mirror nuclei will differ due to the fact that one has one

more proton than the other. To a first approximation, the

difference in energy between these pairs of mirror nuclei,

which can result in the beta decay of one nucleus into the

other, arises solely from this Coulomb energy difference.

When one makes careful measurements, however, one finds

that there are slight additional energy differences between

these nuclei, but these additional differences that arise
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are also due to the difference in charge. The difference

is due to the level shift phenomenon. If the neutron

replaced has a certain kind of orbit inside the nucleus,

then the proton that replaces it will have a similar orbit.

The orbit in general will be perturbed by the electro-

static interaction which exists for the proton, but not

for the neutron, and the residual energy differences can

be precisely understood in terms of the perturbations of

the orbits that occur as a result of the electrostatic

interaction. These small energy differences or level shifts

are closely related to the validity of description of the

ground states of the mirror nuclei as that of a nuclear

core plus an additional nucleon, proton or neutron, in

orbit about that core. The result in every case is that

the entire difference in energy between the states arises

strictly from the charge differences, not from any intrin-

sically nuclear force effects; and we therefore conclude

that nuclear forces are charge independent.

This charge independence of nuclear forces permits

description of the neutron and proton as essentially two

different states of some fundamental particle which we

shall call the nucleon. The quantum number which is



D assigned to mark this difference between the two states is

called the isotopic spin or isospin, and the convention

is that the proton has an isospin of + _, the neutron, - _,

and this quantum number suffices to distinguish these two

states of the nucleon. It was seen above that a neutron

t

and proton can join together to form a bound system, the

deuteron. Since nuclear forces are charge independent, the

question naturally arises whether we might have two neutrons

• !

paired together to give a bound system called, say, the

dineutron, or two protons formed into a diproton, the

isotope 2He . The answer in both cases is negative., The

Pauli exclusion principle states that no two fermions,

elementary partiCles: Of spin _, may exist in the same

quantum state. In the p-n bound state, the deuteron, the

spins of p and n are aligned, but their isospin quantum

numbers are different; so the Pauli principle admits the

3S 1 state as physically acceptable. But in the case
of

' 3 Stwo neutrons, this state is forbidden because the
1

neutrons have the same isospin quantum numbers, and if they

are placed with their spins aligned, they would have the

same set of quantum numbers. The other possible way to

fabricate a nuclear system from two neutrons is to place

P

i
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them with spins opposed, corresponding_ to the singlet state

of the deuteron. In the deuteron, there is no electro _

static repulsion between the neutron and the proton, and

neither will there be any electrostatic interaction between

the neutrons in the proposed dineutron singlet. Since

nuclear forces are charge independent, the specifically

nuclear forces between the two neutrons will be the same

as those between the proton and neutron. The singlet state

of the deuteron is known not to be bound, and therefore

neither is the dineutron. For the diproton, similar reason-

ing prohibits any bound states; in fact, the diproton states

lie higher in the continuum of nucleon-nucleon energy

levels than the dineutron states because of the added

feature of Coulomb repulsion between the two positively

charged protons. Mention will be made later about very

short-lived "diprotons" when the basic reaction in the

proton-proton chain is discussed under nucleosynthesis.

Next consider many-particle systems. It is convenient

in discussing nuclear interactions to introduce a scale of

length appropriate to the smallness of the nucleus. The

characteristic length usually chosen is the fermi (fm)

-13
equal to i0 cm. Scattering experiments show that
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particles must come within one or two fermis before they

interact significantly. We found before that the approxi-

mate radius of the deuteron ground state is about 4.3 fm,

and so the neutron and proton forming the ground state of

the deuteron are almost beyond the range of nuclear forces.

As more nucleons are added, the size of the system decreases

and the binding energy per particle increases. The binding

energy of the deuteron is only about 2.23 MeV, and if we

go up to tritium or He3, adding one more nucleon, the

binding energy increases to about 8 MeV (8.49 MeV for H3,

7.73 MeV for He3). Adding one more nucleon to make an

alpha particle, He4, the total binding energy goes up to

28 MeV, 7 MeV per particle. Beyond this point, the nuclear

forces begin to saturate. As we continue to assemble

nucleons to form heavier and heavier nuclei, the binding

energy per particle increases slowly until Fe 56 where the

binding energy per nucleon is about 8.5 MeV. Beyond Fe 56,

nuclei have somewhat less binding energy per particle;

so in the region around iron, the binding energy per nucleon

reaches a maximum, a fact which will have far-reaching

effects in the discussion of nuclear statistical equilibri-

um and abundances of nuclei made _processes of nucleosyn-
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A

A

Figure i. 1

The nuclear binding energy per nucleon as a function of the

mass number A.
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thesis to follow. For the present, however, the essential

feature to note is that the nuclear binding forces tend to

saturate so that nuclear densities stabilize at about the

same value.

Much effort has been made to measure nuclear radii.

Experimentally one may attempt measurement in terms of the

effective size of the object which undergoes a nuclear

interaction with some sort of bombarding particle, or one

may instead bombard nuclei with high energy electrons,

observe the resultant scattering, and deduce something

about the size and charge distribution of the nucleus.

Electron scattering experiments indicate a somewhat smaller

size for the nucleus than nucleon scattering experiments,

and it is easy to see why: nuclear forces have a signifi-

cant strength over a range of a fermi or two, even though

we describe them as being of short range, and so the

nucleus looks somewhat larger to a nuclear probe than it

does to an electron which interacts only with the Coulomb

field of the nucleus. In the main, however, all these

experiments indicate that beyond helium the radius of the

nucleus goes as the cube root of the number of particles

in the nucleus:



R = r A I/3 (i. i)
o

where r is a constant, in the neighborhood of 1.2 fm, and
o

A is the nuclear mass number, and this is a good empirical

indication that nuclear matter inside the heavier nuclei

has approximately constant density from one nucleus to

another. Hence nuclear forces are attractive at larger

distances but repulsive at short distances.

In recent years, refined electron scattering experi-

ments have indicated that it is not really proper to

describe the nucleus as the equation above implies_ as a

sphere of uniform density which is sharply cut off at some

definite radial distance. Rather, it seems, the nucleus

has a finite edge in which the nuclear density, p, decays

from its essentially constant central value down tO zero

something like this:

f
I

_.--- 3 f_..-.--_

_ure 1.2



One especi_lly useful description of this density variation

is the trapezoidal approximation shown in which _ assumes

a constant density out to some value of r and then decays

linearly. The radius can then be described as the point

at which the density has fallen to half of its central

value. The length over which the nuclear density decays

is about 3 fermis. The trapezoidal approximation is a

fairly good description and will be used in calculations,

such as finding the electrostatic energy of the nucleus in

the nuclear mass formula.

One might wonder whether the central density remains

the same for lighter and medium weight nuclei, where the

number of protons and neutrons is about the same and for

heavy nuclei where the neutron excess may be rather large,

since the nuclear forces might conceivably be somewhat

different in the two cases. Experimental evidence is that

the nuclear density does stay constant even though the

proton-neutron proportion varies. This fact is significant

when we wish to discuss the kinetic energy of nucleons as

if the nucleons were particles confined to a box. When the

neutron-proton proportion is varied, keeping the number

of nucleons in the box the same, we have some experimental
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assurance that we may regard the volume of the box as un-

changed.

The Pauli principle enables one to make a further

observation regarding the general properties of nuclear

matter. Consider a rather heavy nucleus in its ground state,

where the nucleus has the lowest energy available. Accord-

ing to the Pauli principle, all the available nucleon states

are filled in order from the lowest state upwards with one

particle of given spin per quantum state until

all the nucl_ons have been placed. This means that if we

consider any one of these nucleons wandering about inside

the nucleus, it is not possible for the nucleon to collide

in any meaningful way with any of the other nucleons because

there is no unoccupied state nearby into which scattering

couid take place. Thus the wandering nucleon may journey a

long way through nuclear matter without undergoing any

scattering interactions with its neighbors. This fact in

turn implies that it is vali _] to consider nucleons in a

ground state nucleus as drifting about in some average

nuclear potential well, having considerable time to explore

fully the boundaries of the well. This picture is the

basis for the independent particle model of the nucleus,



which was eventually modified to give the more useful shell

model of the nucleus.
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2. Nuclear Masses

Another useful way to look at the nucleus is given by

the Fermi gas model of the nucleus. Later, the same sort

of manipulations will be used to treat electrons in build-

ing up an equation of state that applies to matter in white

dwarf stars. Suppose we have a number of neutrons and protons

confined to a box with infinitely high potential walls, and

for convenience, let the box be cubic. Inside the box. the

wave function, U, describing any one of the nucleons satis-

fies the Schr_dlnger equation:

2 2 2

2 2mE Px
- V U - U - +PY U.

+Pz

2 _2 (2.1)

Outside the box, and at the walls of the box, U = O. If

we agree to put the cube in the first octant with one

corner at (0,0,0) and the diagonally opposite corner at

(L,L,L), where L is the edge of the cube, then the boundary

conditions on U are

U = 0 at x,y,z = 0,L (2.2)

The solution is

C> "2 3/_ P xx l_z

U = _- sin g sin sin
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and{! to satisfy the boundary conditions on U,

LPi
= n.r_ i = x,y,Z. _(2.3)

where n. are positive integers. We wish now to find the
1

number of states with momentum less than the:momentum_p

that corresponds to the energy_E of the particle, that is

states for which

2 2 2 2

Px + Py + Pz ....P (2.4)

or in _terms of the allowedvalues of,Pi_we found above,

(n 2 + n + n ) ,<
Zx y _ n2_2 (2.5)

Now the n. are all positive integers and for each triplet
1

(n ,n ,n ), there is a corresponding momentum state; so let
x y z

us imagine the points (nx,n ,n ) as a lattice network in the
y z

flrst octant'of_a.momentumsp ace wherethe coordinate axes

are n ;n _n , and each point of the space corresponds to a
x y z

Possible momentum of the_nucleon. For our particle, only

certain momenta are all owed and so only a discrete array of

points in the space are of interest. The number of states

with momentum less than p is the same as the number of
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lattice points in the first octant contained within a sphere

of radius pL

Figurt _.1

in the momentum space:

DE

'

/

The number desired is clearly

La_%ice poi_.ts re_r_s%rtt'g

comhlna%ions of i_%ege_s

nnn .
xyz

_y

1 4
n -- Tf

8 3

/P__ 13 p3.

\_/ 6_2_ 3 (2.6)

where i_ = L 3 the volume of the box in which the nucleons

are confined. Similarly the number of states dn with

momentum between p and p + dp will be

..

dn =P_dp

2n2_ 3 (2.7)

This equation says that the number of available states with

2
momentum p is proportional to p , and this is also the

essential relation which is used in astrophysical applications

in calculating the equation of state of a degenerate electrQ_

gas. Now nucleons, as well as electrons, are p_rticles

with spin _: they are fermions and obey the Pauli exc.lusion
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principle. If we say that we have complete degeneracy in

the available states, we mean that the states are filled

to capacity from the bottom upward until the supply of

particles has been exhausted and no particles are to be

found above a certain level, called the Fermi level, labelled

PF" Ana one often refers to this maximum momentum that

particles in a degenerate gas may have as the Fermi momentum,

the corresponding energy as the Fermi energy, or simply the

Fermi level of the gas. A careful examination of the problem

indicates that the exact shape of the confining box is

immaterial.

What is the Fermi momentum for the Z pr_tons in the

nuclear gas? Write

3

2 n nP F

_Z _PF p dp-Z = dn = 2 x 3 23
o o 2_2_ 3u (2.8)

allowing for occupation of each momentum state by two protons

of opposite spin, one up, one down.

the Fermi momentum for protons is

protons PF = (3_2)i/3

Solving (2.8) for PF'

l/3

(2.9)

In the same way, for the N = A-Z neutrons in the nuclear
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gas, _he F_rmi momentum for neutrons is

neutrons = /Nh
PF (3_2)1/3 • \n,)

1/3

(2.lO)

4 3A
If no w we take _ = _ _ro as the volume enclosing the gas,

the corresponding Fermi energies are

2
PF Z 2/3

protons EF = 2M -K (A> (2.1l)

2

PF N 2/3

neutrons EF = 2M - K (_ (2.12)

where K = <4_ >

2/3
_2/2Mr 2

o
, and M is the mass of a nucleon.

The assumption made in the calculation above is that the

levels for protons and for neutrons fill independently:

no exclusion principle forbids occupancy of the same quantum

state by two unlike fermions such as protons and neutrons

whose isospi.s are different.

To find the total kinetic energy of all the protons,

sum the energy corresponding to each momentum state over all

the momentum stats_:

Z PF

= _ EndS : _ 2 _ p2_] dp - " pF 5E Z
_o o 2M 2_2_ 3 IO_2K3M

(2.13)
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or

3

E Z = -- ZE5 F (2.14)

and similarly for neutrons,

3

EN = --5NEF (2.15)

Now let us consider what happens to the kinetic energy

of the nucleons if we have a specific mass number, A, for

the nucleus, as we argued before, a corresponding volume+ and

we vary the relative numbers of neutrons and protons while

maintaining the total number of nucleons constant. It is

convenient to write this kinetic energy in terms of the

excess energy over the case for N = Z; that +is, the zero of

the energy scale will occur when the number of neutrons is

equal to the number of protons. Define

1

1

from which it follows that N = A-Z = _ A + _ (2.17)

and

6E + EN(N) + Ez(Z) - EN(_A) - Ez(_A). (2.18)

We can evaluate the expression for bE using the relations

developed above, equations (2.11), (2.12), (2.14), and

(2.15):



&E =
5/3

3K rNS/3 _/3 1

5A2--3/ [ + Z- i--k2 A_I,

5/3

(2.19)

3K !5/3+ 5/3

/A \ 5/3

2 <_ _ (2.2o)

2
Expanding (2.20) to powers in A ,

3K

- ==,.j=((I)
513 5 A 213 5/A'-l/3A2 A_ 513

2fA_._213 s A-113 2 _) (2.21)

- 1/3

3K i0{A% 2

sA2/3._6 ,,_J

6E-

(2.22)

2 4/3 A 2

3 K A (2.23)

1

Equation (2.23) states that as we depart from N = _ A = Z0

2
the energy of the nucleus increases as A ; there is an

energy advantage to be gained by letting the number of

neutrons equal the number of protons in a given confined

volume. It is moreconvenient for discussion to put

2 A[(A-2z)2] (2.24)

and to call the quantity in brackets the symmetry energy
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of a nucleon in the nucleus and A times the brackQt iS the_

proportional to the symmetry energy of the entire nl_c[eL_s.

This is one of the terms that enters into the mass formula,

to be discussed next.

The details of nuclear theory are _ot sufficiently

well understood to permit a calculation of nuclear masses

from first principles; so semiempirical formulas, much like

the one introduced in 1935 by yon Weizsacker, must be used.

These formulas are sums of terms proportional to quantities

chosen for physically compelling reasons and coefficients

which can be de'termined from experimental data such as

energy differences between mirror nuclei, the positic, n of

the valley of beta stability and measured nuclear masses.

These formulas, strictly speaking, are atomic, rather tha_

nuclear, mass formulas because the masses of the Z electrons

accompanying the nucleus as well as the binding chef(lies

of the electrons to the atom are included. But the _le.-t:L-on

binding energies arc negligible on the nuclear scale, an<_

the electron masses are rather small; so virtually all the

contributions to the atomic mass formula are of nuclear

character.
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A remark concerning the atomic unit of mass is in order.

Until 1962, the physical unit of mass was 1/16 the mass of

the isotope o 16. (The'chemists used a slightly different

unit of mass, defined as 1/16 the average weight of na_u<al_y

occurring oxygen.) 'Oxygen has three naturally occurrin::_

isotopes, 016, 017,. and 018, and.oxygen from different

sources has '_slightly differing, abundances _in the three

isotopes, leading, to difficulty in making refined measure-

ments. Fluorine has only one naturally occurring isotope,

F 19, and some people wanted to define the unit ,of mass as

1/19 the mass of F 19 but beside_ being a vigorous poisonl

fluorineattacks practically all materials known and so

would be inconvenient for use in mass spectromete:s. The

isotope C 12 was finallyagreed upon for u_e _.:_ ,h_. s<andard,

a fortuitous choice because the actual numbers involved

resulting from use of the standard C 12 are only silght]/

16
different from the data in the literature based o_l O

12
So the standard now is 1/12 the mass of C instead of 1/16

the mass of 016 .

It is convenient to work not directly in ierrns of

mass, but in terms of mass excess, or mass defect the

difference between the actual mass of a nucleons, [J. a._d ] ts
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mass number, A, in units of MeV.

written as

The mass formula may be

M-A = 8.07134A - 0.78261BZ + E + E + E
v s sym

+ E + E + S(Z,N) + P(Z,N)
c ex

The first term comes from the mass defect

(2.25)

of the neutron

in MeV, 8.07134, times the number of nucleons in the

nucleus, A. From this, we subtract the energy difference

between the neutron and hydrogen atom, 0.782613 MeV, times

the number of nuclear protons. This much is straight for-

ward: it is the mass excess that an atom would have if its

nucleus were a simple collection of neutrons and protons

not disturbed by nuclear forces. But energy is released

when nucleons are united in a nucleus: this is the binding

energy. For large nuclei the binding energy per nucleon

is roughly constant and since the nuclear volume is propor-

tional to atomic number A, we should add a negative volume

energy E = A.
v

The concept of a nuclear volume energy presupposes a

nucleon completely immersed in a sea of other nucleons all

of which are able to interact equally with it. With a

nucleon near the nuclear surface, however, fewer nucleons
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are able to interact, and so the binding energy will be

reduced for nucleons near the nuclear surface. Thus a

surface correction term, called the surface energy, E n
s

proportional to A 213/ should be added. The surface correc-

tion term should clearly have a sign opposite to the

volume energy term.

The import of equation (2.23) is that as we put nucleons

into the nucleus and induce a departure from N = Z, the

kinetic energy of the system will increase and thus we

should add a symmetry correction term proportional to %E

in equation (2 23) to take account of the energy induced

by neutron-proton imbalance.

Next we should take account of the Coulombic charac-

teristics of the Z protons in the nucleus in a term E , the
c

Coulomb energy. This represents the work done in bringing

up the protons to form the nucleus. Thus E may be written
c

as

-CI
2%4uR3 s_here

of radius'

R

that is, one-half the electrostatic interaction energy

(2.26)

between all pairs of protons _ We have assumed that the
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charge associated with each proton is smeared uniformly

over the nucleus of radius R. The factor r12 represents

the distance between any two protons, [i is the element o5

volume associated with one proton, T 2, that associated with

the other. The factor i/2 out fro_% is there because the

integration counts every pair twice.

E
c 5 R

The result is

One frequently finds in the literature a similar expression

with Z 2 replaced by Z<Z-I).

energy correction as we do,

If one uses a Coulomb exchange
r

then replacing Z 2 by Z(Z-l) is

not correct. The quantity Z(Z-I) arises from considering

Z-I protons distributed over the nucleus and then bringing

up a final proton from infinity and computing the work

done. Our process effectively assembles infinitesimal bits

of charge, smaller than a proton, in calculation of the

Coulomb energy. This procedure, however overestimates the

Coulomb energy because there are exchange forces which

correlate the motions of the nucleons and in particular

prevent a pair of protons from approaching too near one

another. These exchange considerations imply that if

protons are really not allowed to approach each other as
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near as the smearing technique used in calculating Ec

implies, we must add a correction which we call the Coulomb

exchange energy correct:ion_E
ex

The form of the correction

to the Coulomb interaction because of proton exchange may

be written (Bethe and Bacher 1936):

Z Z _

 =XX
i =i k=l

2

* * L dTld _
_i(Xl ) _i(x2 )_ (X2)_k (Xl) r12 2

(2.27)

Here i and k refer to states which, the protqns, may_.ocGupy,

x I refers to the position of one .proton, x 2, to the position

of the other, r12 is .the separation of xl.and .x2, d rl... ._

refers to the volume occupied by one proton and-d_2, to

that occupied by the other proton. A is clearly symmetric

with respect to interchange of states and position becat_se

protons are identical, hence indistinguishable particles.

This expression may be reduced using Dirac's mixed, den:sity

Z

_p(Xl'X2) = Z _i(Xl)'#i(x2) 2.2'=)

so that

2

eA =4 r
12

Ipp(Xl,X 2) I2 dTldV 2 (2.29)
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where the integrations are carried out over a, spher e of radius

R. The eigenfunctions for the particle in a three dimen-

sional box may be written in the form

= /i_ i (Ki-r)
_i \L) 3/2 e .... (2,30)

and using this,the mixed density we need to find before

calculating A is

N N

P(rl'r2) = *i )#i(r2) L3 e i " 2 -r]

i =i i=l

J

(2.31)

53 -_ __K iK'_

1 _ P aK _K dK e
=773 o x y z (2.32)

where r = r2-r I
and we have used the fact that the states

are almost continuously distributed in momentum space. The

integration may be done expeditiously by choosing the polar

axis in the direction of r. Then

1 K

1 d_ _ p K2dK e iKr_= x o

K

2 i'p KdK sin Kr

2_2r o

1
(sin K r - K r cos K r)

2 3 P P P
r

(2.33)
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where K is !/_ times the Fermi momentum of the protons in
P

2
the nucleus. The probability density, p , has a pronounced

maximum for r = 0 and falls off rapidly as K r becomes
P

greater than unity. This means that there is practically

no correlation between the wave functions at two points

whose distance is considerably larger than k
P

= 2_/K , the
P

shortest deBroglie wave length of any proton in the nucleus.

With this expression for the mixed density and with the

additional assumption K R >> 1 (i.e,, large atomic weight),
P

we obtain

A

,_, 2 4,r122dr

1 4_ R 3 i" e i2 '

4 3 o r±2 (,2r123)2 isJn Kpri2 - Kpr!2 cos Kpr]2 )

e2R3K 4 35/3 2/3 e2Z 4/3
P - 71-

32 28/3 X (2.34)

And so the exchange energy may be written

_-_ C1 35 i/3 e2Z4/3
Eex \28 2/ R (2.35)

Still, there are departures from any smooth law to the

actual run of nuclear masses. These departures are correlated

with closed shells of nucleons, to be discussed later with
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the shell model of the nucleus, and the departures take

place in a more or less regular way. At present, there is

no adequate way to calculate from basic principles what

these corrections should be; so it is usually done empirically.

For the present, we simply note the need for some correction

to take account of the energy effects of shell structure,

and that it will be a function of the neutron and the proton

numbers z S-(Z, N) .

Finally, there is a pairing correction, P(Z,N), which

allows for the fact that the masses of adjacent nuclei are

subject to odd-even fluctuations due to the fact that it

is energetically favorable to have two nucleons of the

same kind in the same quantum state with spins opposed. As

illustration, suppose some nucleus to be composed of Closed

proton shells with one additional proton in an outer shell.

The next proton added can go into the same quantum state

as the outer proton if we allow their spins to be opposite.

We say that the outer protons are paired; and there is an

energy associated with the pairing which would not be there

if, in violation of the Pauli principle, the two p:_'otons

could simply sit there in the outer shell without regard

to their spins. The same sort of story can be told for



neutr-oIls; s:o tihe pairing;energy is a function of both proton

and. neutron nUmber. . '

..In the past, when the nuclear radius R-was-not we!l

j,: known, it was considered that the ent:_re Coulomb energy

, , E _ _,, should be regarded as uncertain and subject t_
c R

empirical..adjus%ment._! ,Ufider such circumstances;, the exchange

./ ter,_i_E , :which is. small with 'respect to E L_,, especially fo_
ex c

large Z, was ordinarily left out. The shel!_anc_pa'-ri.ng

corrections were also omitted and one cons_derec ,.,...."

:: :  A2/3 r'A=i-2z ! +
M-A = 8..07134A - 0.782612 + _A + _ v ._ R

(2.36)

with four coefficients, _,_,y, and 5 to be determined. How

might one attack the problem of determining the coefficients?

One property about nuclei _ _ : ,3_ _,_ _ f _heirk_.own _.nde_enc,_,n-lv o .......

measured masses was their stability ag_ins< beta d_ecav.
•" ,_ .: "-" "i_ _*._. " .:_, " .._' !'

.... " "t ,<i.i. ' : .... • " ".:" " .... : _' ' :-_: :
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Refer_:ing to Figure 2.2, lighter nuclei have approximately

equal numbers of neutrons and protons and so the stable

light nuclei lie close the the 45 ° lln_ N=Z. As we pass

to medium and heavy weight nuclei, we begin getting stable

nuclei with larger and larger neutron-over-proton excess,

and so the region of stable nuclei gradually curves away

from the Z=N line. A line running through the center of

the stable nuclei is called the valley of beta stability.

It is called a valley because the energies of nuclei to

either side of it are higher than those in the valley. To

the left of the valley, nuclei are proton rich and tend to

undergo positron decay into the valley; to the right the

nuclei are neutron rich and tend to decay by electron

emission to reduce their energies. Thus the mass excess,

M-A, is least in the valley of beta stability. The condition,

then, for the valley of beta stability for a given Z is

that _(M-A) = 0. The volume and surface energy terms in
_Z

(2.36) contain only A and so drop out in the derivative,

but both the symmetry energy and Coulomb energy terms

survive, and we have the opportunity of determining two

coefficients, y and 6, in the mass formula. For every

value of the mass number A for which we know the correspond-
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ing Z on the valley of beta stability, we have one apDroxi-

_M

mate solution to the equation ?Z 0; so we have a problem

which is greatly overdetermined and which is thus amenable

to a least squares solution to determine the coefficients

for the symmetry energy and for the Coulomb energy, When

these are determined, one may compare the complete mas3

formula directly with measured masses which con, stitute6 a

greatly overdetermined problem for _ and 8, the coefficients

for the volume and surface energy terms. It was this method

that was used by yon Weizs_cker and others after 1935.

In the middle 1950's the high energy elect_on scattering,

experiments which were carried out at Stanford established

rather well the size of the nucleus. It was mentioned

earlier that the scattering data are accommodated best not.

by assuming that R is strictly proportional tc AI/3, bu_

rather by assuming that the central nucleon density i,_

constant. This leads to the expression for nuclea_ radii,

defined as the distances to the half-central-densi_y point

in the trapezoidal model:

R = I.II2A I/3 [i -

h

0. 62025 -_

A2/3 i fm. (2.37)



- _7 -

'_,_t_ _he Stanford data, it is no longer necessary to rejard

R as a poorly known quantity, and therefore the Coulomb

energy need no longer be thought of as something which

must be determined by variation of parameters as it was

above.

This means that the integration for E in _2.331' Sh0ula
c

be altered to cQnform to the trapezoidal model: we n ° longer

consider the protons to be evenly distributed throughout

a spherical volume -- we consider them to have the same

trapezoidal distribution as all the nucleons. The results

_or the Coulomb energy and the exchange energy using the

trapezoidal model are

2 3
Z 2 5 z ] z

E = 0.863 AI/3 [_i - 6 2A2/3 4- 2 3C r r r A
o o o

4 5

4 Z 5 z
+ 9 r r-- '4A4/3 14 5A5/3

o o

_ex

z 4/3 r z

= - 0.660 L1 -
r A I/3A I/3 r
o o

2 4
13 z i0 z

_ +

A 9 4A4/315 r ° r
o

2
4 z

+

3 r 2A2/3
o

5
3 z _

-- 5A5/35 J
r
o

(2.37a)
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WT_ere 2z is the distance in which the nuclear density fails

from its full value to zero. The first terms are like

those in (2.34) and (_.35) but the smearing out Qf the

nuclear edge adds correction terms.

With one of the adjustable parameters eliminated by

measurement, we may concentrate on other terms. It appeared

to Cameron in 1957 that a more consistent view should be

taken with respect to the symmetry energy: since ,the surface

energy arises as a correction to the volume energy term,

one might investigate a surface symmetry term as a correction

to the volume sy'mmetry term already included in the semi-

empirical mass formula (Cameron, 1957). This leads to the

new term

A (2.38)

Similar to the volume symmetry term, but with A replaced by

A 2/3 for obvious reasons. The adjustable terms in the mass

formula are now written as

Ev =_ [i -
A2 j A

(2 .39

E = y [i - (A-2z 2][1 0"6202572
(2.40



where _, 8, M, and @ are variable parameters° The additional

term in E results from using the trapezoidal model of the
s

nucleus. Work by Seeger ran along similar lines. Subsequently,

a study was made to determine the variable parameters for

medium weight nuclei, and separately for heavier weight

nuclei. Even though the values obtained for _, _ and y

were similar, the two values obtained for :_ were quite

different. Accordingly, it was concluded that a physically

meaningful coefficient for the surface symmetry energy

could not be obtained.

The resul6s of the thermonuclear detonation "_.'_ike!'

in 1952 raised questions as to the validity of contemporary

mass formulae (Cameron 1959). In the explosicn, sa._p]es

of U 238 were exposed to a large neutron flux _^hich _¢_ulte_]

in multiple neutron capture, up to 17 capture steps aw:_y

from U 238, forming nuclei up to A = 255. The yields of the

heavier mass numbers were sufficiently g_.-eat that it was

clear that the basic neutron capture c_'oss sections could

not decrease as rapidly as had been predicted as one went

from U 238 to U 255. More recent calculations indicate that

the neutron capture cross sections decrease by no more

than an order of magnitude in the interval mentioned. The
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mass formulae cu_,sidered thus far predict that the neutron

binding energy will drop by about a factor of 2 in going

from U238 to U255, and taking into account the theory of

neutron capture, which depends upon such things as neutron

binding energy and nuclear level density in the vicinity

of the excited state, one expects that the neutron capture

cross section will drop about three orders of magnitude,

results quite at variance with the observed yield pattern.

Since capture of neutrons on a rapid time scale is one of

the principal processes involved in making heavy nuclei,

the question is clearly of some importance.

It seemed to Cameron that the only possible faulty

link in the chain was the determination of the neutron bind!ng

energy, and therefore that it seemed unlikely that the

conventional form of the mass formula ceuld yie]d correct

predictions of neutron binding energies on the neutron

rich side far removed from the valley of beta stability.

A number of modifications in the mass formula were tried

and their results regarding neutron binding energies

examined, but generally the effect of the modifications

wag found to be negligible. The basic reason for this is

that the general coefficients of the terms in the mass



formula must be readjusted to fit the mass surface for each

new form of the formula and this readjustment generally

compensates for the newly introduced effect, so that the

extrapolation of the mass surface away from the valley of

beta stability is hardly affected.

But now attention is directed at the volume symmetry

term (Cameron and Elkin 1965). Examine the derivation of

6E involved the binomial expansion about the condition

N = Z in (3.23). Perhaps this technique could be refined

to give results valid for neutron rich nuclei. Consider

the combined volume and volume-symmetry energy in the

following form:

E = _A El- _ (A-2ZI21
v _ A 2 " (2.41)

Cameron found that _ = 17.0354 MeV and 8 = -31.4506 MeV.

If we extrapolate this expression to the case of a pure

neutron gas, then the binding energy per nucleon will

change from - 17.0354 MeV for A = 2Z (self-conjUgate nuclei)

to + 14.4152 MeV for the pure neutron case. Thus our

conventional mass formula predicts that a pure neutron

gas will be rather violently explosive, having almost as
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much positive energy per nucleon as ordinary nuclear matter

has negative binding energy per nucleon. This is in

disagreement with the theoretical expectation that a pure

neutron gas should be only slightly unbound, say with a

small fraction of an MeV positive energy per nucleon.

Thus it is clear that higher-order terms in the

symmetry energy should be inserted into the mass formula in

order to give more realistic masses for neutron rich nuclei.

These higher order terms will have the effect of increasing

neutron binding energies relative to those predicted by

the conventional formula in the neutron-rich region, in

conformity with the desired result. However, a failure to

obtain a physically realistic value for the coefficient of

the surface energy term warns that the usual procedures

for determining the coefficients of the mass formula cannot

be expected to yield physically realistic values of the

higher order symmetry terms either.

Fortunately, there is one very simple form in which

higher-oxder coefficients are included automatically, and

in which p_e neutron matter is left slightly bound:

E = expF- (A-2z)2
v U e A2 J . (2.42)
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The conventional volume term (3.41) is obtained from the

first two terms in the Taylor expansion of this exponential

function. With the values of z and _ used above, this

would leave a pure neutron gas with a binding energy of

-2.7 MeV per nucleon, even though theory predicts a slightly

unbound neutron gas. It is clear that the true extrapolated

behavior lies between the conventional and exponential

formulas, but probably closer to the exponential formula.

Retaining the spirit of the surface symmetry correction,

combine the volume, surface and symmetry terms into

2 2

z _ , expE_ _ (A-2Z)2-= - - q2/3J j A2 Jvs - _A I/3 \ 3r
o

(2.43)

where again 2z is the nuclear surface thickness, and

(3.43) is called the exponential form of E
vs

Retaining ;!_:

first two terms in the expansion of the exponential in

(3.43), we get the convential form of E
vs

2 2 2

vs aA I/3 3r 2A2/3 / - _ A 2
o

Use of the exponential version of the formula gives satis-

factory results for the neutron capture cross sections.
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These decrease by less than a factor of ten in going from

U 238 to U 255 because the neutron binding energy at U 255 is

down only to about 8_% of its value at U 238. The coefficients

a, _ and _, for the two cases are found to be as follows:

B

Y

Exponential Mass Formula

(MeV)

- 17.2928

Conventional Mass Formula

(MeV)

- 17.4808

26.587 27.5121

- 35.939 - 35.8482

The method of solution of the parameters is not so

straightforward for the exponential case as it was for the

conventional case discussed above because the mass-expression

derivative with respect to Z contains e and v as well as

_. Nevertheless this derivative continues to depend most

sensitively upon _; so it is possible to determine the

coefficients from the conventional input data by an iterative

procedure. Basically, trial values for e and ¥ were assumed

wherevertheyappeared in the exponential factor. The input

data consisted of 89 pairs of values of nuclear charge and

mass number corresponding to the bottom of the valley of
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beta stability. The regions of neutron closed shells

136 _ A _ 142 and 190 _ A _ 220 were excluded. A new value

of _ was obtained by a numerical procedure in which the

2

--|5(M-A)| was minimized along the valley ofquantity
L' LJ_Z

beta stability. With this value of 8, new values of _ and

y were determined by a least-squares fit to 97 odd-odd

nuclei approximately evenly spaced along the valley of

beta stability. Odd-odd nuclei were used because the

pairing correction P(Z,N) is defined to be zero for such

nuclei. Again the closed shell regions where shell cor-

rections S(Z,NI are important were avoided. Previous values

for 8 and _ were used in the exponential factor. The

process was repeated to improve the values of the coeffi-

cients. The calculated coefficients in the two cases are

not radically different and they give about the same fit

to measured masses in each case. Still the results are

imperfect because the measured masses have shell correc-

tions which make them oscillate above and below the

calculated masses. This implies that employing least

square methods to obtain small energy term coefficients

is doomed to failure since the small energy effects in

the mass formula considered so far are masked by shell



effects. Still the exponential formula seems to give

better results both conceptually and in practice than

the conventional one. The shell and pairing refinements

will be brought in after the discussion of particle orbits

in a nuclear potential well.
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3. Particle Orbits in Nuclear Potential Wel<s

It was mentioned in the discussion of nuclear forces

that because nucleons are classified as Fermi particles,

the Pauli exclusion principle implies that a nucleon moving

through a nucleus in the ground state or at low excita-

tion energy is unable to scatter on other nucleons be-

cause of the absence of states into which it could scatter.

Consequently nucleons can move relatively long distances

through nuclear matter without suffering collisions and

this gives them time to explore thoroughly the shape of

any potential well in which they find themselves.

The independent particle model of the nucleus is

based on the assumption that each nucleon in the nucleus

moves independently of all the other nucleons in some

common potential field. This common field represents the

average effect of all interactions with other nucleons,

and it is assumed to be the same for each nucleon. Every

nucleon is thus considered to be an independent particle,

and the presence of other particles moving in the same

field can exert an influence only collectively owing to

the Pauli principle discussed in the last paragraph. We

would expect this model to be a good approximation if



there were no correlation between nucleon motions. Note

that the independent particle model is quite different

from the _-particle and liquid drop models, both of which

involve a high degree of correlation.

Mathematically the assumption of independent motion

of the nucleons means that the wave function for the

nucleus as a whole can be written as the product of the

wave functions for the A individual nucleons:

A

= _ _ i(qi ) = g l(ql)_2(q2)..._A(qA ) (3.1)

i=l

where qi stands for the coordinates (space, spin, and iso-

spin) of the ith nucleon. Of course this way of writing

down the wave function for the nucleus is not entirely

satisfactory the way it stands because the Pauli principle

we invoked to enable us to write the nuclear wave functior

as a product of individual wave functions also requires

that the nuclear wave function be antisymmetric under

exchange of any two sets of nucleon coordinates. For a

system of A nucleons, the properly antisymmetrized form

is represented by the Slater determinant



1

'_1 (ql) '_'I (q2)

_2(ql ) _2(q2 ) (3.2)

_A r _ r__ql I _'A A'n2' %r (qA)

which clearly has the necessary properties; the factor

(i)
involving A! is present for normalization.

The first essential problem to solve in the discussion

of the kinds of orbits nucleons may assume in nuclear po-

tential wells _s finding the energy levels of the indi-

vidual particles in the common or "auxiliary" poten-

tials. (2) It is, of course, necessary to assume some

shape for this potential, but one gets much the same sort

of levels with a shielded inverse square force, an os-

cillator force, or a spherical well.

we shall work out the solution for a three dimensional

harmonic oscill_tor potential because it provides familiar

ground on which to discuss transitions to other well shapes

and because it involves the greatest degree of degeneracy.

The assumed potential energy function is

l 2
V = -V + 2 Mw2r (3.3)

O
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where M is the mass of a nucleon and w is the circular

frequency of oscillation of the classical oscillator.

The solution is simplest to work out in cartesian co-

ordinates and so we rewrite

_2 (x2 2 2V = -V ° + Mw 2 + y + z ). (3.4)

The Schr6dinger equation is

2 2MIv¢+_-_ E+V o
1 2
2 Mw2 (x2 + y + z2)j _ = 0,

(3.5)

which can be solved by the technique of separation of

variables:

_r(x,y,z) = X(x)Y(y)Z(z). (3.6)

The Schr6dinger equation becomes

- + LX -

= - _ (E + Vo ) (3.7)

2
where e = (Mw/_). Each bracketed term above is indepen-

dent of the variables involved in the others, and so each

bracketed term must be equal to some constant, say



- 51-

IQ d2Q ( 2q)2 TY22Mdq 2 - = -Eq,
Q = X,Y,Z; q = x,y,z

(3.8)

Schr_dinger's equation now uncouples into three indepen-

dent simple harmonic oscillator equations, the solutions

to which we know well:

dq2 +

(3.9)

E + V = E + E + E ;
o x y z

the energies are

E = _(nq + 1/2)q
(3.10)

and hence the total energy is

E = -V + _m(n + n + n + 3/2) (3.11)
o x y z

or

E = -V + _(N + 1/2)
o

(3.12)

where

N = n + n + n + 1 (3.13)
x y z

The degree of degeneracy of an energy level of the os-

cillator is equal to the number of different ways (N - i)



can be written as the sum of the three nonnegative inte-

gers n . For example, even for such a small energy as
q

that corresponding to N = 3, the array

n n n

2 0 0

0 2 0

0 0 2

1 1 0

1 0 1

0 1 1

(3.14)

displays the different ways of writing the n corres-
q

ponding to N = 3. The degeneracy, neglecting spin, of

the level for N = 3 is therefore 6; so clearly there is

considerable room for degeneracy in the solutions for the

oscillator potential. The wave functions here are simply

the products of the three one dimensional harmonic os-

cillator eigenfunctions. In normalized form,

3/2 1/2

_n ,n ,n (x,y,z)= _i' <-2n _ n_z+
x y z x n !n !n !

x y z

exp[- i 22 e (x2+y2+z2)] Hn (_X)Hn (eY)Hn (_z)

x y z

(3.15)

where H (_) is the nth Hermite polynomial.
n

It is a
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characteristic of these wave functions that if a given

set of %"s all correspond to the same energy level, any

linear combination of this set also belongs to the same

energy level. For example, let _ i,n be the ith member of

a set of eigenfunctions belonging to the energy level E .
n

It then follows that the wave function U = _ Ai_i, n '

1

where the A i are arbitrary constants, also belongs to the

level E , because
n

HU H
Ai_i, n i i,n ,n i l,n

i i i i

= EU.
n (3.16)

In order to compare the results for our oscillator

potential with those for other central fields, we wish to

write the wave functions in such form as to display their

orbital angular momentum explicitly. A simple way to do

this is to rewrite the wave function %n n n as a function

xyz

of r times a spherical harmonic. This is always possible

by suitable linear combination of the wave functions of

2 2 2
(3.15). Putting _ = _ r , we have the following:
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Note first of all that oscillator levels with even N cor-

respond to odd azimuthal quantum numbers _ because the

wave functions for even N are all odd functions of the

coordinates xyz, and vice versa. There is considerable

degeneracy of levels, the second s level, 2s, coinciding

with the first d level, 3d, in energy, and so oil. The

levels are designated by the usual spectroscopic notation,

giving the lowest level of the azimuthal quantum number

and the principal quantum number n = % +i and numbering

consecutive levels of like% by successive values of n.

Thus the lowest level with £ = 0 (occurring for N = i) is

called is, the next higher level with _ = 0 (occurring at

N -- _) is c_l!e_ 2s_ snd if we had w_itten down the scheme for

N = 5, th_ _ = 0 level there woul4 be caile4 _s.

The general relation between the principal quantum

number n in polar coordinates, the azimuthal quantum

number4, and the "energy quantum number" N is

N = 2n -% - 1

which follows from the examples given above, and can be

demonstrated generally. For a given energy (given N) we

_i N or 1 (N+I) different quantum levels in the n6have
2 z



scheme, according to whether N is even or odd. These

levels have the azimuthal quantum numbers _ = N-I, N-3,

N-5 ..... and the principal quantum numbers n = N, N-I,

N-2 ..... respectively. The total statistical weight of

the energy level N is N(N+I), taking account of the spin

(which introduces a factor of 2 into the sta'tistical weight).

Thus the weight of the levels N = 1,2,3,4,5,6,7, is

2,6,12,20,30,42,56, respectively. The total number of

quantum states having an N smaller or equal to No is

2,8 20,40 70 112 168 for N = 1 to 7. Gathering all
, I I , O

these things together, we can write down the contributions

to these various energy levels, or, as we shall call them,

shells. The j value, which is the orbital angular momen-

tum % plus or minus the intrinsic spin of a nucleon 1/2,

is written as a subscript.



Oscillator
Shell (N)

4

7

57-

Number of

Particles

_% Value Terms

0 is 2 2
1/2

1 2P3/2,2Pi/2 6 8

2,0 3d5/2,3d3/2,2Sl/2 12 20

3,1 4f7/2,4f5/2,3P3/2,3Pi/2 20 40

4,2,0 5g9/2,5g7/2, _ds/z 30 70

4d3/2' 3si/2

5,3,1 6hli/2 ,6h9/2,5f7/2,5f5/2, 42 112

4P3/2' 4PI/2

6,4,2,0 7i13/2 ,7ili/2,6g9/2, 697/2, 56 168

5d5/2' 5d3/2' 4Sl/2

Number of

Particles

up to and

including

Above, all the states for a given value of N have the

same energy. But if the oscillator potential is deformed

toward a square well, the degeneracy is lifted and the

ordering of the energies of the various states for a

compromise between an oscillator and a square well
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potential is shown in the table. For example, in the

second shell, the 2Pi/2 level lies higher in energy than

the 2P3/2 level; similarly in the third shell the 2Sl/2

is highest in energy and the 3d5/2 lowest.

One might hope that nuclei having neutron or proton

numbers given by the figures in the column on the far

right above would be especially stable. For light nuclei

the agreement is fairly good: we know that an alpha

particle, N = Z = 2 is particularly stable. Similarly

16
O with eight neutrons and eight protons is unusually

4O
stable and so is Ca with twenty protons and twenty

neutrons_ so there is some indication that among the

lighter nuclei this shell scheme does bear some relation

to the facts. For larger mass numbers, we find no

special stability associated with forty neutrons or

protons, or with seventy. But there are numbers for

which special stability does occur; nuclei with these

special numbers of neutrons and protons have masses

which are definitely less than the masses of neighboring

nuclei. Experimental data first indicated the existence

of these numbers which were called "magic numbers" With

the advent of the shell model, numbers were associated

g

I
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with closed shells of nucleons. These numbers are 2,8,

perhaps 14,20, perhaps 28,50,82 and 126. Nuclei which

happen to have a magic number of neutrons and also a

magic number of protons are exceptionally stable. Near

the upper end of the periodic table, we find Pb 208,

having 82 protons and 126 neutrons which has such un-

usual properties it behaves almost like a light nucleus.

Even though deformation of an oscillator potential

into a square well does not give the observed features

of nuclear shell structure for heavy nuclei, it is

valid for light nuclei, and so we ask whether we might

not be able to maneuver our model for large proton or

neutron numbers into agreement with experiment.

Haxel, Suess, and Jensen, and M. Mayer developed a

fruitful modification of the straightforward model de-

veloped above which was so successful that Jensen and

Mayer were eventually awarded the Nobel Prize for their

work. Their idea was to assume a coupling between the

spins of the nuclei and their orbital motion in such

fashion that if the spin angular momentum vector is

aligned with the orbital angular momentum vector, then

the nucleon orbit is particularly stable. Such orbits
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lie lower than that indicated in Table i. Conversely,

if s and _ are opposed, then the energy of the level lies

higher than that indicated in Table 1 and the orbit is

said to have less stability. Put another way, if _ and

s are aligned, _ has its maximum value, and the nucleon

binding energy is increased; so the 2P3/2 level is de-

pressed and the 2Pi/2 level raised. In addition this

effect of splitting the j = % + _ and j =6 - _2 terms

is assumed to increase with increasing values of 6. (4)

The p levels are not greatly split, but in the case of

the 3d5/2 and the 3d3/2
levels, one might expect the

3d3/2 level to be shifted to just above the 2Sl/2 level

in Table i. Further down the table, we expect to find

not simple spreading of shells, but the shifting of

lowest levels down into the preceding shell. Thus, for

example the 5g9/2 level for N = 5 would be shifted down

into the level for N = 4, and the 6h would find it-
11/2

self at the top of the N = 5 shell. The result of such

a rearrangement is shown in Table 2.



- 61 -

Table 2

Number of
Particles

Number of up to and
Nuclear Terms % Particles including
Shell J in Shell Shell

I Sl/2 2 2

II P3/2' Pl/2 6 8

IIa d5/2 6 14

III Sl/2, d3/2 6 20

IIIa f7/2 8 28

IV P3/2' f5/2' Pl/2' g9/2 22 50

V g7/2' d5/2' d3/2' Sl/2'hll/2 32 82

VI h9/2' f7/2' f5/2' P3/2' Pl/2' 44 126

i13/2

VII ili/2 'g9/2' g7/2' d5/2' d3/2'sl/2' 58 184

J 15/2

In shell VII, experimental data is incomplete since no

nuclei with 184 neutrons have been studied, let alone 184

protons, but one might hope that multiple neutron capture

experiments could someday indicate whether a closed shell
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exists at 184 nucleons. The first two shells are un-

changed since the spin-orbit coupling is we_h for _ = i.

The depression of the d5/2 term in the third shell is

assumed to produce an intermediate shell between II and

III, called IIa.

shells III and IV.

term of highest j is so strong that it does not form

an intermediate shell but must be incorporated into the

previous shell. Note that this arrangement does give

the magic numbers.

We are now in a position to discuss the shell cor-

rection term S(Z,N) in the empirical mass formula of

section 2. One could hope for a simple shell correc-

tion relation such as S(Z,N) = S(Z) + S(N) with no

coupling between the shell corrections for the neutrons

and protons, and this turns out to be reasonably suc-

cessful. The numbers S(Z) and S(N) are determined in-

dependently by applying a least squares technique to

(5)
all available mass data. Whether the resulting

functions of Z and N have any meaning can be seen by

observing whether the functions vary smoothly. In

practice, it is useful to plot not S(Z) and S(N), but

The same effect is assume_ _0 occur between

Thereafter the depression of the
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dS(Z) and dS(N) which is an even stronger test of physi-
dZ dN

cal meaningfulness: any erratic behavior in S(i) will

be greatly magnified in dS(i)/di. The results are given

for protons in Figure 3.1 and for neutrons in Figure 3._

One can see from Figure 1 that generally the function

behaves in a reasonable fashion. There are strong breaks

in S' (Z), one at Z = 20, others at Z = 28, 50, 82, 126,

(The last break is hypothetical; no data are available

for nuclei with atomic numbers nearly that large.) giving

a graphic demonstration of the tendency to get excep-

tional behavior in nucleon binding energies at these

closed shell positions. Note the rise in nucleon

binding energy just before an abscissa corresponding to

a closed shell and the sharp drop thereafter. In adding

nucleons to a shell which is almost complete, the last

nucleons interact strongly with one another, which means

that their binding energy is greater than the average

binding energy per particle, explaining the sharp in-

crease in nucleon binding energy as a shell is closed.

The first nucleons added to a new shell do not interact

either with themselves or with the core of the nucleus

as strongly as average and so their binding energy at
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first is less than average, explaining the sharp drop

in binding energy just as a new shell is begun. Figure _.

has the same features, but the break at 126 nucleons

is a measured one for neutrons.

One might expect a steady increase in binding energy

as the shell is filled, corresponding to a more or less

smooth decline of the graph between the breaks at closed

shells. But we see some wiggles between closed shells.

Between most of the closed shells on both the neutron

and proton plots the tendency is a general increase in

energy with some local oscillations. In some regions,

however, the oscillation is about a rather steady value;

in such regions the shell model fails and we must in-

stead use a collective nuclear model where the shell

model particle orbits are completely wiped out due to

nuclear deformation. More will be added on this score

later. As a refinement, it should be added that there

may be a slight energy difference between the energy of

a given orbit when it is occupied by neutrons and when

it is occupied by protons, but the difference is so small

it is not usually vexing. Anyway, in the range of the

heavy nuclei, it is usual that quite different mass
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numbers are associated with a given number of protons

and the same number of neutrons, and other effects swamp

the small energy difference.

One can discuss other nuclear properties within the

context of the shell model if one assumes that an even

number of nucleons of the same type in a state of given

j will always arrange themselves to give a spin zero.

We can justify this assumption by noting that nuclear

forces are mainly attractive and hence favor states

symmetric in space coordinates; hence lowest energy

states must be antisymmetric in the spins. This means

that to a good approximation, such pairs of particles

of the same type contribute zero net angular momentum

to the nucleus, and roughly zero net magnetic moment.

Because pairing is preferred, one loses energy in making

these pairs, and nuclei having last neutrons and protons

paired have lower masses and are hence more stable than

nuclei in which the last nucleon is unpaired. This

reasoning is the basis for the pairing correction term

P(Z,N) in the semi-empirical mass formula in section 2.

When the coefficients were calculated for that mass

formula, data for odd-odd nuclei were used since the
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pairing energy for odd-odd nuclei is defined to be zero.

This means something must be subtracted from the mass

for even-odd or even-even nuclei to allow for pairing.

Thus we define essentially three separate mass surfaces:

one for odd-odd nuclei, on which P is identically zero;

one for odd-even nuclei, where there is one contribu-

tion of a negative sign; one for even-even nuclei, for

which there are two negative contributions to P. These

mass surfaces are important in considering stability

against beta decay.

Near the valley of beta stability the plot of proton

(6)
number and mass defect is roughly parabolic:

%J

-o

tm

g

A: 2n+l: _o.st. II

Isobars Odd-A

Figure 3 .3
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(The value of Z corresponding to

an integer. )

gramatically.

(M-A)

_z
= 0 may not be

Beta decay chains are represented dia-

It is easy to see that in all but ex-

tremely exceptional cases there is only one nucleus

stable against beta decay. Exceptions can occur when

two nuclei lie nearly symmetric above the bottom of the

valley of beta stability or when an unstable nucleus has

such a small energy difference from its daughter that

the lifetime for beta decay is comparable to or longer

than the lifetime of the galaxy.

In the case for even mass numbers, we have odd-odd

and even-even nuclei, and two mass parabolas must be

considered:

-_ "_1

L

i i

Figure 3

ISO-bSFS w _ _ :
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Possible decay modes are indicated in this more compli-

cated situation. The figure suggests that even-A,

odd-Z nuclei are unstable, and should not be found in

nature. Actually there are a few, but none heavier than

7NI4 except for 19 K40 (which is radioactive) and 23 V50

As the figure is drawn, there would be two nuclei,

b and c, with mass number A (A even) that are stable

against beta decay, and in most circumstances there are

only two isobars stable against beta decay, though in-

stances of three can occur between closed shells where the

mass surface is strongly deformed.

Another feature of the pairing phenomenon is that the

pairing tendency is larger for high values of orbital

angular momentum. From Figure 3 2_ we note that near the

tops of shells there are some orbits with low _; for

example in shell VI we go from i13/2 to Pl/2 and then

P3/2" Now suppose we ha,,e just finished filling the

Pl/2 level and added an i13/2 particle.

state of the nucleus have a spin 13/27

spins no higher than 9/2 for nuclei in the ground state.

The reason is that it is energetically favorable for

the nucleus to take one of the Pl/2 nucleons, pair it

Does the ground

In fact we find
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with the i13/2 particle, and the pairing energy de-

presses the pair leaving the remaining particle in Pl/2

unpaired. The ground state of the nucleus then has spin

I = 1/2, not 13/2, and the state in which Pl/2 is filled

and a nucleon is left in i
13/2

cited state. In the same way,

will appear as a low ex-

the nucleus As 75 has 33

protons, 5 of them in the unfilled shell IV. If pairing

energies were not important, we would have four protons

in P3/2 and the remaining one in f5/2; the nuclear spin

would be I = 5/2. But it is found that the protons

form two pairs in the f5/2 state, leaving an unpaired

proton in the P3/2 state; the nuclear spin is I = 3/2.

The difference between the pairing energy for a pair

with low % and a pair with high _ is not very large.

The states in which the unpaired nucleon is in the level

of high spin are therefore observed among the first few

excited states.

The pairing phenomenon explains the existence of

islands of isomerism. Experimentally it is found that

for certain ranges of proton or neutron numbers, there

are nuclei which may have rather long lived excited

states. The islands are found for N or Z between 39 and
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49 and between 69 and 8], and a less well pronounced

group for N between iii and 125. These ranges correspond

to N or Z near the end of a nucleon shell and the ex-

planation via pairing considerations is as follows.

Near the tops of the closed shells in Table 2, we have

depressed a high spin orbit from the shell next higher

up by spin-orbit coupling and are filling states of

lower spin with nucleons. At the top of the shell, then,

we have close-lying levels differing greatly in spin.

A nucleon in a lower spin state may take an appreciable

time to pair with one in a higher spin state, thus de-

caying to ground, and this is how the islands of iso-

merism occur.

Pairing also explains why, without exception, even-

even nuclei have ground state spins of zero, and why,

with only two known exceptions, their first excited

state is I : 2.

The shell model of the nucleus has had many suc-

cesses, but it is not always sufficient. If we fill a

subshell completely, we sensibly have a spherical distri-

bution of nucleons; but if the orbit is only partially

filled, the nucleon distribution tends not to be
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sph_rically symmetric. In heavier nuclei, where there

may/_be many particles in an orbit, the asymmetry may be

considerable. Consequently, there is some tendency to

deform the nuclear well itself away from a spherical

shape in order to accommodate the aspherical form the

wave functions assume. If a nucleus is deformed away

from its spherical shape, then the degeneracy shown in

Table 2 is lifted and the shell structure we had before

tends to be obliterated. Calculations for deformed wells

were carried out by Nilsson and Figures 3.5 and 3.6 are parts

of the resulting Nilsson diagram. The dashed line in

the center of the figures represents zero deformation.

To the right, deformation is toward a football shape;

to the left, a bun shape. It is easy to see that before

very high energies are reached, the gaps which before

allowed us to have a shell structure disappear and one

must discuss the angular momentum and parity associated

with individual orbits rather than of the properties of

a nuclear shell. In the upper regions of Figure 3.6

is clear that what nucleon configuration forms the

ground state depends strongly on whether it is energeti-

cally advantageous for the nucleus simply to add nucleons
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to higher states or to change the character of its

deformation and thereby alter the ordering of energy

levels; the confusion also extends to the ordering of

excited states.

The reason for the rather constant level of oscilla-

tions in regions between closed shells is easily seen

at this point. In regions of highly deformed nuclear

wells, prone to occur mostly between closed shells, the

figures show that the shell structure is so smeared out

that the levels available for nucleons increase in

energy in a rather steady fashion, and so the derivative

of nucleon binding'energy with respect to nucleon number

is expected to be roughly constant. The flat regions

of Figures 3.1 and 3.2 seem to ccnfirm o_r expectations.

Another feature which may complicate life is the

fact that more than two particles may be involved in

spin-spin coupling. For example, suppose we place three

nucleons in the g9/2 orbit. From what has been said

previously, we expect two of the particles to assume a

spin opposed configuration leaving the unpaired nucleon

to give a net spin of 9/2. Occasionally one observes a

spin of 7/2 instead of 9/2, and the reason is that the
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three nucleons find it energetically favorable to com-

bine their spins to give the 7/2 spin. The spin 9/2

state would then lie somewhat above the spin 7/2 state.

When the nucleus shows deformation, it frequently

exhibits other collective features as well. Low-lying

excited states can be produced by setting a deformed

nucleus into gross rotation, and we may gain one or two

units or orbital angular momentum entirely as a result

of this collective motion. This produces well-known

sequences of states in which a ground state is sur-

mounted by excited states of increasing spin with

regular increases in the space between them. In addi-

tion, recognizable features of collective motion in the

form of vibrations can be observed in some low-lying

states.
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4. Nuclear Level Densities

Our previous treatment of the nucleus as a fermi gas

assumed the nucleus to be in its ground state, corresponding

to a completely cold fermi gas. For such a cold gas, the

occupation number for states up to the fermi level is !

and beyond that, 0. if some excitation energy is supplied,

some states above the fermi energy will be occupied, with

a corresponding depopulation of states just below the

fermi level which were occupied in the completely cold gas.

I

%

EF

Figure %.I
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The precise shape of the dashed curve in Figure .i de[

on the degree of excitation or temperature of the gas; as

the excitation is increased, the rounding of the sharp

corner becomes more and more pronounced. But as long as

excitation is not so large as to destroy the shape of the

dashed curve shown, one can show from the properties of

fermi statistics that the total energy of the gas is

3 _E F il + 5_ 2 _K 2
Etotal - 5 _- _-F_/ +'''] (4.1)

where _ is the number of fermi particles in the gas, E F is

the fermi energy, and T is the temperature of the gas. The

first term is just the total energy of the cold fermi gas.

The excitation energy can be put into the form

2
E = a (kT)

where

a

2
N

4 E (4.2)
F

For nonrelativistic fermi momenta,

p 2

F
E =
F 2M

with

1 1

F : (3_'2)_ _p (4.3)
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where Q is the spatial volume to which the gas is confined.

Considering the nucleus to be a fermi gas of two types of

nucleons, the excitation energy due to neutrons is

g 72 nM h
n \ 72 -' _2 \ "

(4.4)

where N is the number of neutrons present in the gas. For

protons, with Z the number of protons in the gas, or atomic

number of the nucleus,

i 1
2 _

72 _ O,

2
(kT) (4.5)

In (4.4) and (4.5) M is the mass of a nucleon. The total energy

of excitation for the nucleus is the sum of.(4.4) and (4.5),

2 _ _ i

n p \ 72 _2 Ng + (kT) 2 (4.6)

We now connect the entropy of the nucleus with the number

of accessible states by the fundamental relation encountered

in statistical mechanics

S(T) = k [in P(T) - In p(O)] (4.7)

where P(T) is the number of states available to the system

at a given temperature, or, as we shall see, the nuclear

level density at temperature T. If a system is in its
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ground state, we have perfect order, and we say therefore

that the entropy is zero for the system in its ground state.

Ordinarily any excitation energy injected into the system

can be shared among a number of states, and clearly there

is a fairly large number of ways in which the energy may be

shared among the states. With excitation, then, the dis-

order of the system has increased, and so the entropy has

also increased. We have the usual thermodynamic relation

S (T) = r T
dE

o %-- (_.8)

where we have used equation (_.2). Here a is suitably modi-

fied for use with a gas of two types of fermi particles

2 ,½ S-_M z z

(N _ + )
Z _

a = _ _) _T

Then

and

So that

S(T) = 2ak2T (4.1o)

S (T) = 29/ak2Eo

= e S'//k = e e

p(o) (_.12)
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relates the level densities for excited states to those for

ground states. We have used a grossly simplified argument,

and so (_.12) can be expected to give Only qualitative fea-

tures.

in (h.12), we have a relation for the total density of

all levels, but what is really needed is the density of

levels for a given J (angular momentum) value. This re-

quires consideration of the combinatorial problem of COUnt-

ing the number of states available for a given excitation

energy and counting the number of ways particles can be

taken from below the fermi level and placed in these eX-

cited states, consistent with conservation of energy.

suppose neutrons have single-particle orbits with

energy a s, Occupation number ns ' magnetic quantum number

and protons correspondingly have b s, _, m2s, A singleml_,

state of the whole system is defined by four constants of

the motion

N = _ n (4.13)
s

r"
Z=> z

-J s (4.14)

_'" 7 nsas + I z b- s s (_.15>

M-_n m +Tzm
- s Is L_ S 2s. (h.16)
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The total angular momentum is also a constant of the motion,

but one chooses to work with the M values and to extract J

values at the end by looking at the distribution of M values

and taking the differences between the total number of states

with SucceSsive M valueS.

A more careful treatment of nuclear level densities,

O_iginally given by Bethe, leads to the level density

£Ormu Ia

p(E,J) " i-_- exp L 2al/4E5/4/_ 03

where P(E_J)
-I

is the density in MeV of levels of given

angular momentum J (both parities included) at an energy E

above the fully degenerate state, and o is the spin depend-

1
ence parameter. The observable level density is

P(E) - 9 p(E J) _ _ exp(21_EI,,
' - 12 /_ o al/4E 5/4. (4.i8)

The S@in dependence parameter a is given by

q = g <m2> t
(4.z9)

where g is the sum of the neutron and pgoton single-patti-

cle level spacings, the number of proton and neutron orbits

in a nuclear potential well per unit energy interval at the
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fermi level, and is related to _ by

l 2 (4..20)
a ='_ "rr g

and t is the thermodynamic temperature of the nucleus given

by

t-_ Ea (_.21)

The quantity <m2> is the mean-square magnetic quantum number

for single-particle states. Jensen and Luttinger found

that the succession of shell- model states implies that

<m2> _ 0.146 A 2/3 (h.22)

with fluctuations Of 10% due to shell effects. Combining_

we obtain

2 2/3
0 = 0.0888 at A . (4.2])

This means that the spin parameter varies like E I/4, a

relatively slow variation which can often be neglected. It

is useful to define the nuclear temperature T as

= d(!nP) = _-_E - 3 E;
!

dE 2

at high energies T tends toward the thermodynamic tempera-

ture t of equation (4.21).

For most nuclei the only good information on neutron
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resonances is obtained from s-wave neutron resonances.

Suppose we are observing s-wave resonances on a target

nucleus with ground-state spin and parity I The only

states of the compound nucleus which will be seen are those

with spin I + _ or I - _ and parity _. Assuming equal

probabilities for both parities, the level density for

s-wave neutron resonances is

¢'_ - 2 _' (E,J). (b,.24)

If we use equations (i.17)_ (4.23) and (4.24) to fit the

neutron resonance data, we have in effect two free para-

meters, a and Eo (energy of the fully degenerate state).

One might think that E " was simply the ground state so
o

that E could be simply the excitation energy. The remain-

ing parameter a could then be fitted to match theoretical

predictions with observed neutron resonance spacings.

If this is done, there will be systematic differences

in the values of a for neighboring even-even, odd-A, and

odd-odd nuclei. These discrepancies could be removed by

subtracting the pairing energy from the excitation energy

to obtain an effective excitation energy. Suppose, for
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example, we wish to consider excitation of an even-even

nucleus. In excitation we break up the particles in orbits

near the fermi level and place them into higher orbits, and

in so doing we destroy some of the pair bonding. Much of

the energy..__ expended in the excitation goes into breaking

the pairing. We therefore should replace E by

U = E - P(N) - P(Z) (_.25)

where P(N) and P(Z) are pairing energies for neutrons and

protons, zero for odd values of N or Z, this procedure has

the empirical justification that it removes systematic even-

odd effects in the values of a.

Figures 4.2 and _.3 shaw a typic_l run of nuclei for which

the total number of neutron resonances is plotted versus

neutron energy E . Most of the plots seem to have roughly
n

straight line portions near ground and in all cases the

curvature away from the straight line is in the same direc-

tion, suggesting levels are being missed at high energies.

Experimentalists often determine neutron energies by the

time of flight method, and higher energy means shorter time

of flight so that a loss of resolution can be expected at

high energies, accounting for our missed levels. By

evaluating (h.18) _t the neutron bindi:_ energy and co_pa_'-
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ing the corresponding level density expected at the neutron

binding energy from the approximately linear portions of

the N vs. E plots, one can check whether levels are being

missed. In order to use (h.18) one must have a value for

the spin dependence parameter. S-wave capture or scatter-

ing gives information for only two spin values, I - _ and

1
I + _, so that the numbers of levels are known only for

these two spin values, not the total number of levels. In

order to correct this for the total number of levels one

must guess at a reasonable value for the spin parameter,

and Figures 4.2 and 4.3 show resu_ts for two values of o appro-

priate to the nuclei considered. In all the cases shown

the indication is that the curvature away from the straight

line is indeed due to experimentally missed levels.

Straight line relationships like these suggest asking

whether the proper formula is N = exp (2/_ or instead

(TI_J) where T is some constant. One way to test theN exp

two propositions is to make plots of representative data.

This is done in Figures _.h and h._. Figure 4.4 tests the

exp (2/a-'_) relationship by plotting In2N as a function

of the effective excitation energy. In the lower energy

region the fit is quite good, but the discrepancy at the

neutron binding energy is huge. Figure 4.5 tests exp (_)
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which looks very poor at lower energies, but does fit the

neutron binding energy reasonably well. We must be missing

some levels. The basic behavior at low excitation energies

is not that given by the fermi gas model, exp (2/aU), but

instead something like exp (U/T). The fermi gas model is

useful for supplying a complete set of levels which may

then be reordered in energy due to other effects such as

the pairing and collective corrections. At high enough

excitation energies, we believe the gas model must be

valid. From this evidence it seems better to use an empir-

ical form like exp (U/T) near the ground state, and the

fermi gas model at high energies. We shall need some

prescription for finding out how to join these two pre-

scriptions smoothly.

Bethe's treatment of the nucleus as a fermi gas of

free neutrons and protons confined to the nuclear volume

and gives

a/A = constant (4.26)

The value of a can be determined from a consideration of

the level densities at neutron binding energy, and this

value then divided by mass number. In fact we do not find



a constant ratio. Nuclear level densities are subject to

strong shell influences and near closed shells nuclei have

much smaller level densities at the neutron binding energy

than nuclei well away from closed shells, and so it is easy

to see why a/A is not constant. The question is, Is there

a way to allow for the existence of the shells? Figure 2.6

shows the run of data for a/A versus total shell corrections

for Z _ 30. We consider the nuclei in the regions

54 _ Z _ 78

86 _ Z _ 122

86 _ N <- 122

130 _ N <- 182

to be deformed. Nuclei are not generally considered to be

deformed when they are close to closed shells. In Figure 4.6

the crosses correspond to undeformed nuclei and the dots

to deformed nuclei. The undeformed nuclei seem to cluster

around line I while the deformed nuclei seem to fit the

parallel line II. For the undeformed nuclei of line I

a/A = 0.00917 S + 0.142,

and for deformed nuclei

a/A = 0.00917 S + 0.120.

Figure 1.7 shows a/A vs. the total shell correction
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S = S(N) + S(Z), for 20 _ Z _ 29. In this region the corre-

lation is still close to line I, which is the correlation

for undeformed heavy nuclei, though the scatter is rather

more than one would like. Figure 4.8 shows a/A vs. total

shell correction for nuclei with ii _ Z _ 19. These nuclei

no longer scatter about the correlation line for undeformed

heavy nuclei. Some of them might fall below the line be-

cause of deformation or some other collective effect (e.g.,

Na and Mg isotopes). It must also be pointed out that the

mass formula is not very good in this region; the shell

corrections are less accurate. Nevertheless, the nuclei

do seem to follow approximately the correlation for deformed

heavy nuclei (line II) and so we shall use it to get values

of a/A for nuclei with a few known lower levels.

148

Figure 4.9 shows level data for Sm We have levels

measured near ground and also near the neutron binding

energy. The solid line is calculated from the composite

level density relation. Above the cross, the dashed line

is an extrapolation of the low energy formula and below it,

the high energy formula. To determine fits to data, we

choose a point P in some region near ground where the

levels are practically linear and demand that our straight
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line pass through it. The line through the pivot point P

is then rotated until it meets the high energy calculated

line tangentially. We then believe the low energy form up

to the point of tangency and the high energy formula above

it.

We can write

rE - E ]
I P o

J (4.2.7)N = exp L T

where E is the energy of the point of tangency described
P

above and E its intercept, T is called the nuclear tempera-
o

ture. T effectively gives the slope of the low-energy form-

ula straight line. Figure _.i0 is the resulting set of

nuclear temperatures, which has a smooth dependence on

mass number. There is no systematic difference due to

even-odd effects and so all nuclei are represented in the

same way. Generally, T decreases with increasing A and

superimposed on this are marked shell effects, particularly

near the double closed shell nucleus Pb 208, these effects

are visible to a lesser extent near the N = 82, N = 50, and

N = 28 shells. The Z = 50 shell does not show up in this

manner, however, nor does it cause a fluctuation in a. The

rise of T near closed shells makes N smaller there as it
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shouid.

One may attempt plotting E , the excitation energy of the tangency
X

point, vs. A. When this is done, systematic odd-even effects are

visible, but these can be substantially removed by subtracting the

relevant pairing energies. A plot of U = E
X X

U vs. A is shown in
0

Figure 4.11. Generally there are no shell effects, except possibly

for some nuclei with Z or N within two units of a closed shell. Overall,

U decreases with decreasing A. The spread in U also decreases with
X X

increasing A. The three curves drawn are

(i) The average value, u : 2.5 + 150
x A

(2) The upper limit, U =2.7+_
x

2OO

A

120

A(3) The lower limit, U = 2.1 +
x

The uncertainty in U at first seems large, but this is not critical,
x

as one can see by reinspection of Figure 4.9. The point of tangency, marked

x, is at an energy E = 6.0 MeV. There is a region, about i MeV wide,
x

where the two curves are virtually indistinguishable. An uncertainty in

U of about 0.5 MeV would therefore not affect the slope and intercept of
x

the lower protion of the curve significantly. The size of this region,

where the two curves almost coincide, increases as A decreases becoming

about 2 MeV for nuclei with A _ 50. Hence the fact that the uncertainty in

U also increases as A decreases should not be critical.
X

A graph of E° vs. A is shown in Figure 4.12, there are quite obvious

odd-even effects here. For odd A nuclei, the average value of E is about
o
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-0.5 MeV and the spread becomes larger as we go to smaller values of A,

which is hardly unexpected since this is the region where nuclei assert

their individuality most prominently. The separation between neighboring

even-even and odd-odd n.uclei is of the order of the pairing energy.

The curves drawn are + <I_> where <P> is an average of ½ [P (N )+P(Z )]

with local fluctuations smoothed out. These give outer envelopes for the

intercepts of even-even and odd-odd nuclei, respectively. Most values

of E are inside the region bounded by the two curves. For deformed even-
o

even nuclei the intercepts seem to be systematically lower than <P>,

particular_v_r the deformed nuclei on either side of the region of the

double closed shell nucleus Pb 208. The odd A values tend to cluster in

the middle, but with a fair amount of scatter. Anyway, it is reasonable

to take the pairing energy lines as rough measures of where these

intercepts should go.

Let P be the calculated value of the neutron resonance density
c

from (4.17), (4.23), and (4.24), and let Pobs be the observed value of

the neutron resonance density. The ratio Pc/Pobs vs. A is shown in

Figure 4.13. The scatter is appreciable, the logarithmic mean expectation

value for the error in calculating the level density being 1.75. It is

likely that this is the best that can be done in the near future because

to do better, refined techniques must be devised to take account of shell

and pairing effects and so on for specific nuclei.

We can summarize the composite prescription for a complete representation

of the nuclear level density when we have no experimental information about

the nucleus in question as follows.
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At high energies the density of levels at energy E of given J

(of either parity) is

_- ex_(2_) (2J+l)exp[-(J+_)2/2 _2] (MeV -I)

P2(E,J)= 12 ai/_u5/4 2 q_- a3 (4.17)

where

U : E - U : E - P(Z) - P(N) (in MeV) (4.25)
o

2 i A2= 0.0888 (aU) _ /3 , (4.23)

P(Z) and P(N) being tabulated pairing energies, a is obtained from the

appropriate correlation of a/A with S, the total shell correction

S = S(Z) + S(N). For _mdeformed nuclei

a/A = 0.00917S + 0.142

and for deformed nuclei

a/A = 0.00917S + 0.120

(MeV-l),

(MeV -I) ,

S(N) and S(Z) being tabulated shell corrections.

all J is

_/-'_ exp(2..N/_ ') -I

The nuclear temperature is given by

The density of levels of

(4._8)

T

This P2 is valid for all energies greater than Ex, where
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_5o (MeV)Ux = 2.5+ T

E = U + P(Z)+ P(N),
x x

Below this the level density is

i exp[(E'Eo)/T]pI(E)=

(4.28)

(4.29)

The parameters T and E° are determined by fitting P2 and P l at E = Ex,

i.e._

T :_(U)

p I(Ex) :TI expEEx_Eo)/T ] =, P2(Ux), (4.30)

: _- T _T _,_(u)]..E o

These level densities are the quantities to which things like

particle reaction rates or particle reaction cross sections are most

sensitive, and so when we wish to calculate nuclear reaction rates

under stellar conditions_ especially under extreme stellar conditions in

which the very heaviest nuclei will be involved in the reactions, it is

particularly important to have a reliable prescription for the nuclear

level densities.

References
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5. Nuclear Reactions

We have already considered some of those aspects of

nuclei concerned with the static properties the particle

orbits, level densities and mass. We now turn our atten-

tion to some of the changes that can take place in nuclei,

specifically nuclear reactions.

To begin with we will consider some general properties

of nuclear reactions. If we want to make a realistic

calculation of nuclear reaction rates we will require some

idea of the basic principles involved, and some quantita-

tive knowledge of the functions involved. Our treatment

will follow that in Th__e__or_e_tica.lNuclear P_hl{_@_!CS by

J. M. Blatt and V.F. Weisskopf.

We represent a nuclear reaction as follows:

where, _ is a particle interacting with some nucleus X,

producing a transition to some nucleus Y and an emitted

particle b. The emitted particle _ may be another nucleus,

and more than one particle may be emitted. Strictly speak-

ing _ or _ may be a v-ray, but such transitions will always

be considered separately.
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c_ possib]_ +,,_ of reactions are
q

a+_X-_X +a_

a_ +_X-Y +b

(inelastic scattering)

(elastic scattering)

Nuclear Reaction Channels

The particle a and the nucleus X are in the ground

state. The combination of these will be one channel for

the reaction which we will call the entrance channel or

the initial channel. Elastic scattering then involves a

re-emission of particles into the entrance channel.

Inelastic scattering defines an entirely different channel

even though the nucleus and the projectile may be the same.

Similarly X + b (with Y and b in ground states) is

an exit channel. Any similar reaction in which Y is in

any one of its excited states corresponds to a different

channel. We will denote channels by Greek letters. Con-

sider the channel _. The state of the nucleus involved in

this channel is indicated by _ , and the state of the

//

particle involved is indicated by _ Thus we can write

a reaction as follows:

" + X t -_ X , + a :,
a _ _

/

<5.2)

4
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where 5 indicates another channel.

When we have a nuclear reaction there are certain basic

physical laws that we expect to be obeyed. We expect that

there will be conservation of energy, linear momentum,

angular momentum and parity in a reaction, as long as we

are not talking about weak interactions. We can always

insist upon conservation of parity in strong nuclear

reactions since the extent to which parity is not conserved

in these reactions is small.

The reaction energy in a nuclear reaction is known as

the Q-value. If we define the channel energy as the sum of

the kinetic energies of the particle and nucleus in that

channel, then

e8 = ¢ +

where

, + E_ - E 8, - ES,, {5.h)Q_8 = E

If £ is less than zero then conservation of energy requires

that the reaction cannot take place and we describe the

reaction channel as being closed.

For the channels we are consideringj all particles are

in the ground state of the nucleus. In any particular
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reaction, such as an _ entrance channel and a ? exit channel,

with_8 >0 (so that the reaction is exothermic) the limit in

which the channel energy in _ goes to zero gives the defini-

tion of the ordinary nuclear Q value (i.e. the ordinary

reaction energy for the reaction). Similarly if the re-

action is endothermic, so that we must have some energy in the

channel which just leaves the outgoing particles with

zero energy in the ¥ channel, then the entrance channel energy

Ca is just the negative of the Q value.

Cross Section

Define the cross section a

number of events of specified t_e per unit time per nucleus

number of incident particles per unit area per unit time

Consider a plane wave of particles of type A incident

on a nucleus X in the entrance channel e. We will separate

the events involving the entrance channel from the other

events by writing the total cross section for the entrance

channel e as the sum of a scattering cross section in _ plus

the reaction cross section corresponding to a.

= (a) + o (a) (55)Ot(_) OSC r
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The scattering cross section includes only elastic scatter-

ing. The inelastic scattering will be regarded as part of

the reaction cross section.

In order to get the qualitative features of the re-

action we assume that both the projectile _ and the nucleus

have zero spins. We divide each channel _ into different

orbital angular momenta so that we can talk about sub-

channels of type _ and orbital angular momenta 6. To treat

the problem of angular momentum we consider a plane wave of

incident particles which can be decomposed into spherical

harmonics Y6,0 where each Y_,O corresponds to a different

spherical wave carrying a different amount of angular

momentum. This means that we can decompose the cross

sections into sub-channels.

Osc( ) = > (5.6 SC,45
Z=O

o0

o V
r = /__ °r,t

L--O

where o and a are total cross sections in that they
SC r,

have been integrated over all emerging angles. If we were

going to talk about the angular distribution of the outgoing

particles we would have to consider the angular dependence
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of the cross sections. We will not in general consider

angular distribution because in the application to thermo-

nuclear reaction rates we are only interested in total cross

sections.

Now we would like to place some limits on the reaction

cross sections from rather simple geometrical arguments. To

do this we divide the incoming plane wave into a number of

zones, as follows:

F ig_e 5 .i

i '

The innermost zone will contain particles with impact parameters

less than the de Broglie wave length divided by 2n. The next

zone will contain particles of impact parameters between hand

2k etc.

In classical mechanics the angular momentum of an inci-

dent particle is the mass times the velocity times the impact

parameter p. Thus in the t th zone the incident particles

I

I
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will have angular momenta between mv_ and mv(6+l)_. From

the definition of the deBroglie wavelength the angular

momenta lie between 4_ and (6+I)W. We would now like to

quantize this classical picture by assuming that the parti-

cles with angular momentum 6 are the ones which move in

the 6th-- zone (to a crude approximation). The cross-sectional

area of the 6th zone is

n(_+l)2 _2 _ _,_2k2 = (26+1). k2

We will consider this to give an upper limit to the

reaction cross section for the particles incident on the

(2i+l)n k2
nucleus in this zone. So _r,Z

This relation does not apply to the scattering cross section.

We have not yet said anything about nuclear size. When

6_ starts to exceed the nuclear radius we say that the cross

sections farther out for higher angular momenta fall off

very rapidly because the chance of hitting anything beyond

the nuclear edge is small. On the other hand when Ik is

less than the nuclear radius the chance of hitting the nucleus

is very high and we say that the partial cross section for

such angular momenta is likely to approach the upper limit.

We can now proceed in a more formal fashion to find
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some of these cross section limits. We will represent the

incident beam by a plane wave in the entrance channel, and

we will define a chancre coordinate r as the vector oe-
g

tween the center of the target nucleus and the projectile.

The _.._'_l_n_wave can be written in the following _,,,

exp(i _ 4r ) = exp(ikz) (5.9)

where k is the wave number

parallel to the vector k_
I1

and we have chosen the z axis

We define k as

M v

M M
where M = a x, the reduced ,mass,

M +M
_'a x

W_ define the channel wave number i kl

5.10)

as

l k I (2M=_ = __ = _ CCI)

From now on we will omit the index _ as we will rarely need

to refer to specific channels.

The plane wave has to be expanded in spherical harmonics

in which the coefficients of the various multipole orders

wii ! involve spherical Bessei functions. We only want to
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concern ourselves with incoming and outgoing waves at large

distances from the scattering nucleus located at the center

of the coordinates. So we take the asymptotic forms of the

spherical Bessel functions for large values of the argument

and get for a plane wave expansion

co

ikz _ Ze _ --- (2Z+I )
kr

2,=0

½ -.l-i(kr -_) \y
i6#I _e -i(kr-_g_ )-e ) 6,0

{5.32_

This expression describes an undisturbed plane wave. The

reactions taking place will only disturb the outgoing plane

wave. We now change the outgoing plane wave by modifying

only the coefficient representing this wave in theabove.

Thus we write

" _ rr (24+1) ½ _+i
_(r) - kr i

%=0

{exp[-i (kr-_) ]

-_Z exp[i (kr-½6n) .7!Y6_j -0 (5.13)

The scattered wave is the difference between the actual wave

and the incident wave. Thus,

= _(r) - exp(ikz) (5 14'
SC
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or
J

r 2 •

¢ (2%41) i
sc kr

,tll 0

(i - _%) exp[i(kr - %6_) - {; . '

The scattering cross section is obtained by dividing

the number of _cattered particles per second by the number

of incident particles per square centimeter per second.

Define N as the number of scattered particles and N as
sc

the number of incident particles. To find N the origin
sc _

is enclosed by a large sphere of radius r, and we equate

9sc (the fiux going through the sphere) to Nsc.

quantum mechanical probability current is:

The

I -- ( g V $ - 9 _ ? ) (5.16)
2iM

Thus,
W

sc '_ - SC 9 _ Sin @ do dq0
N = -- J_- xc sc ' r°
sc _iM _r Ar

<.5.17)

(DO "" "" 2

- -- - Y% 0 :..
2 iM k 2 4=0 ' ro

We then have _[Y[,0 sin <)de-d_0 = i

sin o de d7

(5.18)
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Then

_ _ - (_½ _ _ _ (2M½Mv 2)

Mk k 2 _ M k 2 M

_V

k 2 ',5.19

Thus
OD

N = v-ll Z (2_+I) (i )
sc k 2 - _.6

%=0

(5.20)

The v which appears in these equations is the channel

velocity.

The incident flux is given by

N - 2iM L_z exp ikz exp(-ikz) - exp(-ikz) exp(ikz)|
_z A

}Mv 2 J""
- 2ik - ---:-- •

2iM M M

(5.21

(5.22

or N : v

The scattering cross section is

N

sc 2 - {-4. 2Osc,% - - rr A (2_+I) {1 { (5N

Na determines the reaction cross section which is
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the number of particles removed from the beam per second

i.e. the number of particles entering a sphere of radius

r but which do not leave again through the entrance
o'

channel. Thus it is the net flux into the sphere as

computed from the complete wave function _ (_).

-h J' ( _ * _ _ _)ro 2 sin e de dcD (._.2_+NA = 2i--M -- _r _ - _r i'

The minus sign is taken in order that N
A

Ecfuation (_._4) gives

come out positive.

03

_ w Z - < ) (5._5)N 2 (l I
k _:O

So

N
A 2

r,% N

And these results constitute a formal proof of the

geometrical limits which were previously discussed only

qualitatively. We should have I_61 2 _< 1 to prevent the

outgoing wave from exceeding the incoming wave. =or different

values of _% we can get different expressions for the reaction a_.d sc'atte_i!.:-

cross sections. Suppose { = -i
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then

0 =4_, k
SO,6

0 = 0
r,6

which gives a maximum value for the scattering cross section.

On the other hand if % = 0 then

0 = _ k
sc,2_

2
(26+1)

o 2
r,6 = _ k (26+1) (5.28)

which is the limiting value for the reaction cross section.

Qualitatively the reaction and scattering cross sections are

essentially equal to the geometric area.

Suppose, apart from angular momentum arguments, one

just considers a disc absorbing particles and that this

leads to a reaction when the particles strike within the

actual geometrical area. But when particles just miss

the edge of the disc they do not react but can still be

diffracted by wave effects. This diffraction can give a

scattering cross section which is equal to the geometrical

area of the disc.
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Choosing different _t's we can make a plot as follows.

} igur_ • ..

3

0 4,
Sc_

r, _ (2£+i)

We may have any combination of scattering and reaction

cross sections within the shaded area. Thus we may have

pure scattering but we can never have pure reactions with-

out scattering. The reason for this is that in order to

get absorbtion the outgoing part of the plane wave must be

weakened and that means we have to add an outgoing wave of

opposite phase. It is this outgoing wave which corresponds

to some scattering. We can obtain pure scattering by simply

making a change in phase. The scattering cross section can

be as much as four times the reaction cross section because

the scattering cross section involves the phase of _, but

the reaction cross section involves only the absolute value

of {%. This means that in elastic scattering the incoming

2
• _ (28+1)
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and outgoing waves are coherent and therefore they can inter-

fere both constructively and destructively. It is the con-

structive interference which can give rise to a factor of

four. The reaction cross section does not contain the

possibility of interference and so the maximum value for it

is one.

We must now relate the size of the nucleus to the

de Broglie wave length. As the energy of the incoming

particle is increased its de Broglie wave length decreases,

i.e. k goes to zero, and consequently at some energy, k

•_ _ m=_m= small compared to the nuclear radius. SoWl _L ± ,_ .......

the ideal case might be obtained for a nucleus, with R

very much greater than k, which absorbs all the particles

incident on the nucleus which lead to reactions, and does

not interact with particles that miss the edge. The criti-

cal value of 6 is R/k and all particles with 6 _ 6critical

will strike the nucleus.

if {6 = 0, %k <- R [5.Z9

if _6 : l,£k m R (5.30
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Thus we have

2
0 = o = )i (2£FI)<r sc _ > (5. _:

£=0

R/_ 2% _ k 2 d%

2
a_ , R (5.32

In the limit of high energies the total cross section is

:: O ' 0.y-

°t sc r

2
= 2nR 5.33

twice the cross sectional area of the nucieu_. This

points out that diffraction of particles by the edge of

the nucieuo gives a contribution to 0sc equal to the geo-

metric area.

The Loqarithmic Derivative

Now we want to see what the relations are metween the

external wave functions for the incoming and outgoing

waves and the conditions in the nucleus. Ordinarily we

]<now very little about what is going on in the nucleus.

However, we know that the wave function that corresponds

to the nucleus must join on smoothly with the wave func-

tions in the external channels. Therefore we have to

deal with the conditions at the nuclear _urface, the
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value and derivative of the wave function. All the neces-

sary information concerning scattering and reaction cross

sections are contained in the magnitude of _i.

For simplicity consider neutrons at the surface with

zero angular momentum. We must make the assumption that

the nucleus has a well defined surface, although we know

that it does not. The nuclear edge is fuzzy, the density

falling off in a smooth manner. Thus there is a great

deal of arbitrariness in talking about the nuclear surface.

We define the channel radius R as follows:

R = R + R where
x A'

r > R outside the nucleus

r < R inside the nucleus

Consider an incoming neutron of zero angular momentum,

which we shall call an S wave neutron. We describe the

relative motion of the neutron and nucleus in the external

region by a wave function _(r) which corresponds to the

relative motion of two particles having no interaction

between them.

2 k 2
V _ + _ = 0 for r > R (5.34)
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where k is the entrance channel wave number. Now <his

equation will not hold inside the nucleus.

For large values of r, _ is a superposition of inci-

dent plane waves exp(ikz) and an outgoing spherical wave.

Our previous analysis was based on the asymptotic behavior

at infinity for large values of r, and now we have to

consider the behavior for smaller values of r right down

to the channel radius.

We write _ (3) as

U£(r)v---

' r ,0
&=o

where we only consider m = o since exp(ikz), the incident

wave, is independent of azimuthal angle _.

For S wave neutrons we have

d2U k2Uo + = 0 r
0

dr 2

R

The general solution of this equation is

U (r) : a exp(-ikr) + b exp(ikr),
0

r _ R

z .



- 127 -

and for a complete specification we need boundary condi-

tions. We shall consider the behavior of the wave func-

tion at large distances. At large r the asymptotic form

for _ is

$
- kr L (2_+i) z

4 = 0

{exp[-i (kr-½6_) ]

So the constants are

-_ exp[i (kr-½Z_) ]

(538)

m

i_/_
a = k b = -<_0 a (5.39)

The only limitation put on which gives the coefficientO'

of the outgoing wave, by the asymptotic conditions at in-

finity, is that the absolute value of C 0 should be less

than or equal to unity. The coefficient must be obtained

from the theory of nuclear reactions and it therefore

depends upon conditions in the nuclear interior; thus we

must connect _0 with conditions at the nuclear surface.

We describe the behavior of Uo(r ) just outside the nuclear

surface in terms of the logarithmic derivative,
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[dUo /dr
fo=R ,. _ o ]r=R

We argue that the logarithmic derivative immediately out-

side the nucleus must be equal to the iogarit]_mic derivative

inside, w,,ich is in turn determined from the conditions

inside the nucleus. Thus if we know what the logarithmic

derivative is at the nuclear surface we can then determine

the quantity t0.

f0 = R -ika exp (-ikr) + ikb exp (ikr)
r=R

= ikR [-exp(-ikR) - { 0 exp (ikR_

exp(-ikR) - { 0 exp (ikR_

(5.4_)

"'-f0 + f0 _0 exp(2ikR) = ikR + _0 ikR exp(2ikR)

or

_0
f0 -_ ikR

- f0 - ikR " exp(-2ikR) (5.42)

This gives the necessary rela[.ionship between the scatter-

ing functions {0 and the logarithmic derivative for this

special case of S-wave neutrons. We see that if the

logarithmic derivative is a real number then _{012 = i
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and c = 0.
r,0

We now proceed to evaluate the scattering cross sec-

tion.

= _
sc,O ,,j • _}

= TT;_ i- _f0 .:IikR .>
<f0 - ikR exp(-2ikR)

2

2 -2 ikR

f© - ikR
+ exp (2ikR)- 1

2

21 12= _ _ A +A
SC,o res pot (5.44)

where

2ikR
A

res f0-ikR

:Resonance Amplitude

(5._5)

Apot : exp(2ikR) -i :Potential Amplitude

(5.46)

If the nucleus were to be regarded as a perfectiy

reflecting sphere of radius R, then the wave function

would have to vanish at the nuclear surface. This implies

that
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f0 = dr U0 r=R

and thus _ is determined by Apo t In practice onesc,0

gets contributions from both terms at the nuclear surface,

and thus the potential scattering term is only approximated

in some special cases.

The contribution to the reaction cross section can

be written in the following form

_2 2o =. (1-1 oI) (5.48)
r,O

= q k2 -4kR Im f0)
2

(Re f0 ) _ (Ira f0-kR)
(5

Since the reaction cross section is inherently positive

it must be that Im _ _ 0.

We will now extend the previous discussion for S-wave

neutrons to charged particles of arbitrary angular momen-

tum. Consider an arbitrary 6 so that in the entrance

channel we have

• - 2 V(r) # = 0 (5.50 _
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where we again assume

_ (r_) = _(r,e) = 7, U%(r)
r Y_, o (e)

and the radial wave equation is

d2Ut (r) £ (_+i)
+ _k 2 _

2 , 2
dr - r

2M V(r)

2 ] U£ (r) = 0

.j

We will take the potential V(r) to be

2
Z Z e

A x

- for r > R (_.5_)V(r) r

and this is the Coulomb wave equation. For the Coulomb

wave equation there are two linearly independent solutions

F£ (r) the regular solution

G£ (r) the irregular solution

It is customary to adapt the following notation, which

is standard in most literature

2
Mv Z Z e

k =-- = kr A x
o _ - _v ("._
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so the wave equation reduces to

d2U6 2_ 6 (6+i)

2+[1---- 2 ]U6 = 0

d O P p

The regular solution is chosen with the following

asymptotic behavior at zero and infinity

Amplitude of

F6 (p,rl) : 0

F6-" i

-%

for P=0

Jas p--*oo

(5.55>

The behavior for large P is given by

F_ _ sin[p-_ log 20-½6_+_ : sin e6 (5.56)

the Coulomb phase shift is given by _6 is

_(i+i_): : (t+i_)(t-l+i_) .... (l+i_)ei[O2

exp(2i_i) -(6_i_) : (_-i_) (_-l-i_)--- (l-i_)
(5.57)

The asymptotic behavior of the irregular solution is

G6 _ cos e_, for p_ (5.58)

where

e6 is defined in equation (5.56).
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The following recursion relations will be useful

(where Ug stands for either F t or Gg):

(_.l,,

2 2 • 6+I]u 6[0 + u +l [
_ , + - U;

t+l _-t+l o (5.6o)

2 Ug+l _ U/--i

[0 -!- (_+i)2]]_ g+l + (02+ g2)

(26+1) [0/6' p'k-_tl) + I/0]U 6 (5 61)

Note: A dash represents differentiation with respect to p.

I i
The Wronskian relation F G - F G is independent

e e e e

of P as implied by the Coulomb equation, and thus it can be

determined from the asymptotic behavior of the functions,

and that establishes it as being equal to unity.

We will not concern ourselves with any of the approxi-

mate forms that the Coulomb wave function can have but will

be satisfied with the Coulomb wave equation and the general

behavior of the two types of solutions.

For neutrons (0=0) we can use Bessel functions to

write the solutions:
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0)% ,
E6 (p) = (½_ J6j._<(P) (,<.c_jj

I

= - _:+½ (o) (')..,-s)

with J and N the Bessel and Neuman functions respectively.

We describe outgoing and incoming spherical waves in

terms of linear combinations of these functions. For

neutrons

(+)
U,t (r) = G%(D) + i _(_) (_.6_).

and for charged particles

Ui(+) (r) ---exp(-i _6) [G6(P) + i F6(0) ]

where U 6(-) (r) _complex conjugate of U%(+) (r).

For large_ the asymptotic behavior is

(5.65)

(+)
u% (o) _ exp[i(p-½ %_)] (0> >,6 ) (5.66)

For the external region,

Ut(r) = a U%
?

(-)
(r) + b Ut

C+)
(r) (5.6Y)

I
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This form can be compared to equation (5.13).

,(r) __ --_ T, (2%+I) _ 1

0 t=O

_exp[-i (0---1_g_)]

(5.,_8)

Thus, a = i 6_-i) _ k

b = -C% a i

]

(5.67)

Now we connect _6 to the logarithmic derivative f%

dUg (+)/dO n

f_,- kR[-- (._),,
U% -'r=R

- At + iSg (5.70)

A6 and S t are real numbers determined by the external

_(+)
conditions. It follows from the definition of U_ that,

J I

I_

F_ + G% r=R

(5.Y_)

S t

' - FIG 6 '
= kR[ G%F6 -_I

2 2

F_ + G_ r=R /,laf
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I

From the Wronskian relation, GtF6 -FtG t

denote the common factor in At and $6 as

!

= 1 we

Pt =

1

2 2

F_ (R) + G_ (R)

(5-_3)

Pt is identified with the penetrability of the potential

barrier by charged particles. We can now write

S t = kRP 6 (5.74)

The phase of U6 (-) (R) is represented by X where,

exp(2iXt) -

U t(-) (R) G t(R) - iF t(R)

- exp (2i _t)

U t(+) (R) Gt(R) + iF t(R)
(5.75)

The relation between _ and the other quantities is:

ft _ A t + iS t

_t = ft - At - iS$ exp(2iXt) (5.76)

If ft is real then lctl2 = i which is scattering without

reaction. The maximum scattering cross section involves

taking _t = -i and thus

fg = A t + S t tan X t (5.,/)
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Using the relations for _ and c
sc,£ r,%

we have

where

A
res

k 2 % % 2
(2i+i)_

I

sc,i IAres pot'
= + A I

-2iS%

(Ref%-A%) ....i (Imf %-S%)

and

%
A

pot = exp(-2ik%) -i )

-4S6 Imf%

o : (2%+l)Tr k 2 _ I

r,& t (R f _A% 2e-6 ) -' (Imf%-Si)2

('.. , }

and Imf% _ 0 as before.

Reciprocity Theorem for Nuclear Reactions

We have so far dealt only with the reaction cross

section 0 (_) which does not specify how the nuclear re-
r

action is to proceed after entry of particle a (into the

target nucie_ts X) in the entrance channel _ There are

many channels _ through which the reaction can proceed.

We write:

a (_) :
r _

_(_,_) + 0 (_)
cap
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which is the reaction cross section in channel _. c
cap

denotes radiative capture.

We now develop a relation between o(_ _) and the

inverse reation a(B,e) by first introducing the differen-

tial cross section:

o (A,B) = a (_,8,O,_)d _ <j,'

The process represented by this cross section is one in

which the incident particle a travels in the z direction,

while the outgoing particle b moves within solid angle

d_ the direction of which is given by the polar angles

e & _ . The differential cross section for the inverse

process is:

o (-B,-A) = <:(B,O, _,°_)d[]! • 8_.j • _.

in which all the direction are reversed.

Consider states A and B of a quantum mechanical

system, where state A contains particle a in channel _"

and nucleus X in channel _'

particles) : The interval e

(both a and X being free

to e + he contains the

channel energy. The direction of a is within d_, in the

z direction, toward X. State B contains partic]_e b in
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channel L and nucleus Y in B' (both b and Y being free

particles The interval { to _-_ + Ac contains the
8 :

channel energy. The direction of b is within d_], in the

z direction, away from Y.

To understand the connection between the processes

A" B and -B _ -A we enclose the system in a large volume

V and consider probabilities per unit time P(A,B) and

P(-B, -A) of the transitions. (It is understood that

the minus sign denotes "reversed time.") P(A,B), P(-B,-A)

are given by :

C_(A,B)
P(A,B) = Vo_ V

o (-B,-A)
P(.B,-A) : v_ V _. 5z,b )

where the v's are the relative velocities in the respec-

tive channels. These relations can be understood by

thinking of the partic]e which induces the reaction as

bouncing around inside V so that it periodically has a

chance of striking the nucleus and the flux for one

particle is just the velocity of the target area, which

gives the probability of having a reaction take place

p_::_ unit time of a general quantum mechanical system
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has two single non-degenerate states (which we can des-

ignate by p and q which have the same energy, then the

transition rate T for p ' q equals the rate T
Pq -q, -p

for -q -'-p where again the m.inus is taken to mean time

reversal. These states can ,low be made degene[a_<., which

means they acquire some statistic_ weights. I_ f:he.

statistical weight of the degenerate state P is gp and

for degenerate state Q the transition probabilitiesgQ

ebey the relation:

T T
= _Q,_ P

gQ gp
,<

gA and gB are given by the number of free particle states

with energy and direction in the intervals A_: and d_,

respective ly.

2

Vp_ @aa_

gA =
3

(2T,_)

Now E = p2"2M/ --> dE - pdp :_ r<<_k.:.,_ob:
M

.<.
2

..p dp = MpdP. (9.<',,_')

V(2M3_e) ½ hCd_ !
gA =

(2,r_)

and similarly

V(2M83e )½Aed_

(2rT_)

<.-



Hence

P(A,BI
L

V (2Mf_3 c [_) 2A Cd_

{u

o

° .

Now

3,/2 ½
P (A,B)

V
t_

½
o (A,B)

1

C_

(2_%)

= M 3/2

=V

½

BP (- ,--A)

M_
3/2

M_ o

I _ 8¢_h",;" V/

!.CA,._. : _('B,-A)

k _ k 2
O o/

(:::.9o)

ioeo

Now

o(¢_ S,@,ct) - : o(_,o,_0,_)

k k -
O_ ck

!' o(@,8,0,_9)d['2 = o(c_,8)
,J

C5 .,,9_)

o (_, _) o (9,¢_)

cy O_

This is the reciprocity theorm.



The Compound Nucleus, Continuum Theory

We now consider a certain kind of average over reso-

nances which is called continuum theory or compound nucle_is

theory. The original suggestion for this treatment was

due to N. Bohr and is known as the Bohr assumption. This

says that when a particle enters a nucleus its energy is

quickly shared among all the m_cleons, while energy,

angular momentum and parity are conserved in the reaction.

The subsequent decay of the compound nucleus is independ-

ent of the way in which it was formed• This assumption

thus considers t}_at ther<; are strong interactions between

the nucleons. This does not contradict the independent

particle model where interactions are prevented by the

Pauli principle• The incoming particles generally have

ample energy to knock nucleons into unoccupied states,

so that strong interactions are possible. Calculations

-i
of nuclear mean free path ,: (_:(_)) where 0- is the

collision cross section and _ is the nucleon density

within the nucleus) indicate that

-13
A --- .4 x I0 = <: 2 0 MeV

A--- 1 8 x 10 -.15• x E(in MeV) <_% for higher
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energies. These distances are less than nuclear dimen-

sions if the incident energies are less than _i00 MeV.

Thus such particles can be expected to interact with

the nucleus and be captured. This will impart an aver-

age energy C/A to each nucleon. If this is smaller than

the separation energy of a nucleon then a thorough mixing

of the er_ergy will occur and it will be a long time be-

for enough energy is statistically concentrated on one

nucleon to allow it to escape. The length of this mix-

ing time is the reason for the assumption that the com-

pound nucleus forgets how it was formed.

The Bohr assumption is written mathematically as

follows:

(a,b) : _C (a) Gc(b) (5'.9!+'}

in which particle a is incident upon the nucleus X and

o (a) is the cross section for the formation of a com-
e

pound system C, Gc{b) is relative probability that the

compound nucleus will emit the particle. Since the

nucleus must decay somehow, the sum over all such

probabilities is unity
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i.e° G_(b) : 1
K,

b

We consider radiation to be a possible mode of decay.

We can write the reaction in greater detail by

specifying channels c_ (entrance channel) and B (exit

channel) .

G (_,8) = OC (_)G C(9) • )

The disintegration depends only on energy, angular

momentum and parity (we exclude G C (_)). We will here

neglect all dependences on the angular mome_tum and

parity, and only obtain relations for the conservation

of energy.

We make use of the mean lifetime T (E C) to define

the reaction width:

F(E c) = _T (Ec) (units of energy) (5

Since there are several nodes of decay available to C

we can divide F into reaction widths:

['(E C) = _ F!_ (EC)

The sum is over all exit channels available to

I_. ;) F)\/,
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We can get a useful relation from the reciprQcity

theorm.

,'C&)

C C(_)Gc(B) _ (_)G C(_)

k_ 2 kB2

(5. ;,8b)

therefore, _c(_) ac (B)

V_k_2 FBkB2

- U(E C) (5.98c)

It will be noted that

(_)
C

is independent of the channel

and can be written as a function U(Ec) of the compound

nucleus energy.

Then,

2

ac (s) t'.!3 a c (_)
F = = (5.99)

8 k 82 U (E C) U (E C )

and

F

%(s) =r" 5 •iOOa )

kB 2 o (B) k J oc (Y)

GC

u (Ec) / u (Ec )

GC(B ) =

2

,'-. i t3OL,)
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Thus the different probabilities for decay of the compound

nucleus can be computed if the cross sections _ C(V) for

the formation of the compound system by all possible

channels are known.

Determination of Cross Sections, Continuum Theory

As a first approximation we may guess that the

reaction cross section is n(R + k)2 This combines our

previous estimates for high and low energies. Actually,

however, barrier effects will reduce this as will sudden

changes in the potential to which the particle is sub-

jected. This gives rise to a reflection of the incoming

wave at the nuclear surface which will be strongest for

low energies.

F£gure 5.3

>X

V(_)
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We can determine the consequence of such a reflec-

tion with a simple two dimensional example. A beam of

particles of energy e is incident from the left, travel-

ing in the positive X direction in a potential given by:

V(x) = 0, for x < 0

V(x) - -V0, for x > 0

Particles which come along from the left will be partially

reflected at the jump in the potential at x = 0 and we can

calculate the transmission coefficient

number of _articles penet_'0ting into x > 0

number cf incident particles /

in the usual way that one does in quantum mechanics.

wave function _ (x) will be:

The

where:

Y(x) = Ae ikx + Be-ikx _ for x < 0 (5.±<La)

(x) = Ce iKx ', x > 0 ,,5. _oi_,)

½
k = (2 M_) , x < 0 (<.<;,,)

K : [2M (£ + Vo)J ½ , x > 0 ' (_5•102b)

and
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By matching ? (x) and the deviative of Y (x) at x : O we

obtain

A ,-B = C

ik(A- B) = iKC
\/

.. 2kA = C(k + K) (5. _oh_,)

• . 2kB = C(k - K) (t, .-_0hd)

k k

( - <,. )A : B

k + K k - K

or
k - K\ / A
k + K

(5.zo_4g)

thus T : IA2 _ Lik- K)2" IAI2
(k + K) 2_

2
(A)

and after some rearranging.

4kK
T =

2
(K + k)

(5. lOhh)

(5. _o_i )

This transmission coefficient is actually the same for

particles incident from either direction. If k << K,

T will be small i,e. low energy limit. In the high

energy limit, K _ k and T _ i.

T can be taken to approximate the transmission

coefficient of neutrons into a nucleus° Actually the
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neutron in higher angular momentum states will be further

impeded :by the centrifugal barrier.

We now take the capture cro_s section for neutrons

to be:

2 4kK
o,,(n) _<__(R + k) 2

U

(k + K)

(.._, /05]

Note that this approaches the classical value Wk 2 at high

energies. At low energies we have

2k i 1o c (n) --_k _ k -_ _-':_ _ --V [5._o_

]

This is the " 18w for slow neutron absorption.
V

Again, these

estimates are too large due to the centrifugal and coulomb

barriers.

The partial formation cross sections can be written

as:

oc %(_) = (2% _L i)_ k2Ti(_) + (_.io7)

It then becomes necessary to sum the partial cross sec-

tions over the _ values. We can generally indicate the

+ See Blatt and Weisskopf for derivation of expressions

for the transmission coefficients for these barriers.
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dr U0 Ir=R

and thus Osc, 0 is determined by Apo t. In practice one

gets contributions from both terms at the nuclear surface,

and thus the potential scattering term is only approximated

in some special cases.

The contribution to the reaction cross section can

be written in the following form

o =_k 2 2
r,0 (i- I_01 ) (5.48)

=_
-4kR Im f0)

(R e f0)2_(/m f0-kR)2 (5 ._9)

Since the reaction cross section is inherently positive

it must be that Im _ _ 0.

We will now extend the previous discussion for S-wave

neutrons to charged particles of arbitrary angular momen-

tum. Consider an arbitrary % so that in the entrance

channel we have



account of the Pauli exclusion principle it will be the

Fermi distribution inside the nucleus Blatt and

Weisskopf estimate:

-13 -I
K0 _ 1 x i0 cm ",.•:_9)

for thermal particles. In general

0 2 k2K = %/K +

Decay of Compound Nucleus; Competition

(5.11o)

, Evaporation Model

We have succeeded in getting particles into the

nucleus. We now wish to find how particles can get out

of it. We recall from the reciprocity theorm that this

is related to the process of putting all the various

possible exit particles into the nucleus. Thus it is

necessary to make some sort of estimate about the various

exit channels.

We therefore want the energy distribution of the

emitted particles. The kinetic energy in channel _ is

C = C +
8 _ Q_. Only a small amount of the energy is

imparted to the residual nucleus Y. Most of it goes

into kinetic energy of the emitted particle b. Thus
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we can consider the kinetic energy of b to be e So

e = e - E : "
bY 8 _" _ "

in which Cy is the maximum value of e8 when the nucleus

Y will have an excitation energy E 8 after the reaction.

We neglect the possibility of the particle be being left

in an excited state. Thus the emitted spectrum depends

.

on the levels E8 available in the reaction. In general

these increase in density with increasing nuclear excita-

tion, a process which favors emission of particles with

low energies. Hence the actual distribution will repre-

sent a compromise between these tendencies and will have

some sort of peak. We will consider only averages over

individual levels.

The number of particles b emitted between e and

e + d e has a distribution function Gb(e)d¢ given by:

Gb(C)dC = 7 CC(B ) (5. 12
e_eS<eJ.de

where the sum is over the channels whose energy is

within the interval d e . The number of terms in the

sum determined by the number of levels of Y having an
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excitation energy E_
w

between E and E - dE, with

E : -::3'7 - g This number is called m (E)dE where tu (-:)
-it

is the "level density"

We had:

ka2 c; (8)
Gc(e) = c

kc 2 o (y)
y C

I . i ! J

The denomination is a sum over all channels and does not

depend on c . We get the relative intensity distribution

of the outgoing particle by taking only the numerator of

(6. 93).

b(C)d e = constant x e '_C (_)_YCebY - ¢)dC" ( 5. :lg

oc (8) = c; (c) is a function g = _ the channel energy.
C e'

co (#) is an increasing function of c,
C

, whereas _, (Cby - _)

is a strongly decreasing function. Thus the intensity

distribution which is a product of two factors described

is a peaked distribution.

Let S(E) = log w (E)

and expand in a Taylor series aroung the maximum energy

C

0Y

I
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s dS_

- :) : s(%y ) - c , de, +''"
E = £

T (¢)d _. const, x "':)C (_;)e-c/<_i (¢ ' ) S(c )- = _" _ d c x e bY (ll.rJ¢)
:J

Let

e (c) : d-E ._:,.i it.)

and absorb e S("by) into the constant.

Hence

_c/_ (%y) . i<::)I. (C)dC = const, cO (c)e d e (:
b C '

® can be interpreted as a nuclear "temperature" and has

the dimension of an energy. We consider S(E) as analagous

(apart from the Boltzman constant k) to the entropy of the

residual nucleus in the energy ranQe dE near E. The

definition of _ is then equivalent to the thermodynamic

relation dS - dQ/T.
i

The function OC (c) is slowly varying for neutrons

(except at very low energies) and this term can be neg-

lected. This leaves

-c/e (c )
Ib(C)d¢ : constl x c e <f d ¢.

• / •

This is precisely the Maxwell distribution of molecule

energies which would be evaporated from a surface at
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temperature b. The maximum of I: ({) lies at < - which

should be small compared to _:_ to make the Taylor ex-

pansion valid. The average energy of tile emitted neutrons

is, 6 = 2®. For charged particles the factor_- <c (_) dis-

torts the distribution and the maximum shifts to higher

particle energies. We thus think of the neutrons as

being evaporated from the nucleus. However, it should

be noted that the temperature characteristic of the

evaporation is that of the residual nucleus, since

evaporation of one particle accounts for a relatively

large loss thus reducing the temperature a good deal.

Since the average neutron energy is low, the residual

nucleus will usually be left excited by almost eby , so

that e is the energy which characterizes the tempera-bY

ture associated with the process.

Since it is not usually possible to distinguish an

exit channel for a particle b (in an experiment) or to

determine the energy of b we need only consider the cross

section of reaction (a,b) without considering the specific

channels leading to emission of b. We define

Fb = _k82_C (8)  $.fZo)
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or expressing the sum as an integral, we have:

c

2M : by

e oC (e)t_Uy(¢bv - e
2 ,!o _ _ '-

h

The cross section then becomes;

o C (a) Fb

O(a,b) - _ F (5.L_2)

C C

Thus if we know level de_s_ties

reaction cross sections.

we could calculate

Nuclear Resonances

We saw that the nucleus contains levels both above

and below particle separ_tLct_ energies, when we were

looking at the theory of alpha decay. It was apparent

that for certain values of the excitation energy the

wave function 0f a space particLe outgoLc_._ from the l_otential

will joins to a large wave function inside (on resonance).

At other energies the interior wave function is small

(off resonance).

Off Resonance At Resonance

r_
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Thus it _<::,._].dappear that for certain values of the in-

cident par!::(c].e energy the incoming particle can penetrate.

into the nuc).cus with a large probability, which is much

less probable at <Jther energies. These are the nuclear

resonances which w_ ha,,le previously averaged out.

It is evident in order for a resonance to have mean-

F sing, the width of the resonance must be less than the

distance between resonances D
S

i.e. Fs < D
S

We can make a classical picture in order to think

about the lifetimes of these states. Consider the period

D of the motion of a nucleon inside the nucleus (or more

properly, the period of a maximum in the square of the

wave function). D is the time taken for a configuration

to recur. Consider a number of states with equal spacing

D:

9%_ = E 0 + nD (.. !,i<>_]

The wave function '_ is then written as a linear com-

bination of N states.



N

n= 1 ,-'!' :

N
- ]. _LDt.,,' _:

where c_n gives the space dependence.

clear that:

From (6.19) it is

2,±h, i 2I{ {t .- D j = I_'(t)12

Thus

2_
p-

D

Consider a state created by a particle "a" entering

into the residual nucleus by the channel _., and the

question: How long doe;_ it take the particle to re-

appear at the nuclear surface such that the remaining

constituents of the nucleus are arranged so that a can

leave through its original entrance channel? This time

is of the order of 2!7_2/D, the period of the motion.

If the particle now does leave the nucleus the lifetime

of the state would have been of order P and the width

of the state:

i_s t_ D

p 2vr

, r .



i.e. width is of order of level spacing and a state is

not well defined. However the lifetime of a state will

be greatly increased if there is a large reflection

coefficient at the nuclear boundary, and then the state

will be well defined.

F s
is the probability for decay through channel

and r_/_ the probability per unit time that the system

will decay via channel _ when all other channels are

artificially closed the lifetime • of the state with
s

channel e ope_ _ is then • = _/r_ which must be ofonly

order P. Define _(_) as the transmission coefficient

toward the outside so that:

P
.L8

r s D

It should be noted that in these considerations the spac-

ing D is that between levels with the same J and _ (for

which integrals of the notion are the same except for

the energy.)

We shall not try to derive the shape of the cross

section curve in the neighborhood of a resonance, but
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we will write it in analogy with the dispersion of light.

We have in the vicinity of a resonance:

F Sl -s

(G__ c s) + (½Fs) 2

(7. lO_

where Fs
is the probability of decay of the compound

nucleus into channel _ and £_s is the energy of the

resonance. For a particular type of reaction we multiply

FB/F and use excitation energies E:by Gc(_) = s s

o(_, 6) _ (2£ + I)_ Xe

V s F s
2 _

(E-E) + (½rs) 2
s

(,t..! !,_,_

This is the Breit-Wigner one level formula.

This is not correct for the case of elastic scatter-

ing, because there can be interference effects between

the re-emission of the particle "a" by the compound

nucleusand the scattering at the nuclear surface as

well as at the potential outside the nucleus. The

corresponding cross section for elastic scattering is

iF s 2

o = _Z(ec c_) =(2_, + 1)rT Xa 2 + _" J
sc _ ' (c _e ._ ½i Fs Apo t

' Ct CLs
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The first term is the resonance scattering amplitude and

the second the potential scattering amplitude as pre-

viously defined. This inteference can often lead to a

cross section shape llke:

%

¢,,4,R _"

r_

E

if one is not interested in a precise cross section

off resonance but in a sum of the cross sections or an

integral of the cross sections over many resonances

then interference effects are not of any concern, be-

cause if there is constructive interference between a

couple of resonances, then in general there will be

destructive interference on the other side of both

resonances and the integral over energy will be the same.

Usually when one is evaluating nuclear cross sections

r

for use in nuclear astrophysics One does not know

enough about all of the relevent properties to be able
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to make a calculation of the i-,Lor< ...._ ":_. _,.mc= effect:; and

we are therefore interested iP jT,!egldting over resanan-

ces.

Thus, let us consider the s_n<,:,,- ]....._ ...._,._-:;

sections :

(ab) = i_ ka 2 (26 -!-i)

F F
a b

(Ea_Er)2 + (F/2) 2

(5._3e)

For a narrow resonance we assume that ka, Fa, F and' b

F vary slowly over the resonance peak, The contribu-
Y

tion of this resonance to the average cross section is

therefore given by.

1

O(a,b) = n_,2(26 + I) r !" J _--- 2 2 dE

a b (E_-EI) ._-(Z2) a

2
> r T

/ a a b

2_2g(a,b) = (2P_ + i)
r E =E 1,l

(5.±33)

(5._i{_)

where in order to extend the limits of i_tegration from

-_ to _ we have assumed that the contriLotions from

the resonance tails are small. W%,eD there are many
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resonances within the thermonuclear bombarding re_i u_ we

use non-resona_.t reaction formula, but writ _ .:: 11 ,_;

the cross section represents an average over resonances.

i.e.

(o> = 2n2k 2 <

(2t + !) -P
ab

c ',-_</ ....52 )

Particle Widths

From nuclear reaction theory, the particle widths

can be written as:

2
F =
% 2P%V%

where i specifies the value of the orbital angular

monentum. Pt is the nuclear penetrability defined by:

P& = p/EF42(p) + G%2(P)] 1,5 .L36)

and Q = k R where R is the nuclear radius and F6(P) and

Gi(P) are the regular and irregular solutions of the

2

coulomb equation. The factor 76 is the reduced width

for the particle channel and is dependent upon the be-

havior of the wave function within the nucleus. Gen-

erally a detailed knowledge of the form of the reduced



width is not available.

2
nodel we can write ¥,_

On the basis of a "black nucleu,._"

in the form:

- 14
2 2 x i0

7¢ _-_ R _ (E,J,_)

Now, the above quantities a_:e f_,nctions of the nuclear-

radius at which the coulomb wave functions are evaluated,

but there is some ambiguity as to the position we desig-

nate as the nuclear radius. From the discussion con-

cerning the use of exterior wave functions in the nuclear

boundary and interior wave functions it was determined

that one wants the boundary to be placed out reasonably

as far aspossible because the nuclear forces have

finite ranges and will modify the Coulomb potential at

the distance of about one fermi or more, outside the

position which one would normally designate as the

nuclear radius. Besides that the nucleus has a diffuse

edge which adds to the confusion and making a small num-

ber of nucleous go out rather far giving nuclear poten.-

tia]-at a fair distance from the nucleus. Thus the_-e

is some advantage to putting the radius out as far as

possible.



On the other hand placing the radius out too far

leads to difficulties with the interior estimate of

reduced particle width Thus we have to achieve some

compromise between large and small nuclear radius. This

is done by considering the radius to be an adjustable

parameter, and varying it to see when a decent companion

with experiment is obtained.

The nuclear radius is written as:

5 1

s

R = ro(_ + AT ) fermis (L_.[-:._]<,o

where An and A_ are the mass numbers of the projectile
S ]

and target nucleus respectively. One now varies r to
o

see what value of r gives the best fit to experiment.
o

In the paper "Thermonuclear Reactions in Medium and

Heavy Nucleii "by Truran, Hansen, Cameron and Gilbert,

a comparison with the experimental points for (p,n)

reactions published by Johnson et al (1958), it was

concluded that

provided the i:est

r = 1.20
o

fit to the data.
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6. Ga_na Ray Trans it ions

Nuclear gamma ray transitions are not in principle, dSfferent from

atomic transitions or from transitions in any q'_antum mechanical system.

A convenient approach to this problem is to adapt the results of the

classical theory of radiation to the quantum theory. Eventually we

will be led to Weisskopf simple estimates of the transition matrix

elements_ results which have proven to be useful as a standard of

comparison in nuclear physics.

The nucleus is a small enough body so that it may be considered

as a source small compared to the wavelengths being emitted (this is

good for E < iO Mev. ). The angular momentum _ of the radiation is

designated by the same type of quantum numbers as for a particle

]_z = m and I'_ = £(]_ + i) (6.1)

Higher values of _ are not important as the probability of radiative

transition decreases rapidly with increasing £, unless the lower values

are expresseiy forbY:alden by some selection rule.

There can be both "electric" and "magnetic" radiation emitted

for each value of the angular momentum of the light wave emitted from

the system. That is, the radiation may result from either changes in

the distribution of charge, or from changes in the distribution of cur-

rents in the system. We can also see this by considering a current dis-

tribution near the origin to be emitting spherical outgoing waves. Max-
--9

well's equation for the magnetic field #.g alone is unchanged when we

change the sign of the coordinates. Hence we can separate the magnetic

field into two parts, even and odd, each of which is a solu[ion of

Ma_mell's equation. We have an even parity wave for which
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_(-r) = + _(r)

and an odd parity wave for which
.-¢ ._

_(-r) = - _(r)

(6.2)

(6.3)

If we have an even parity _,(r) we have an odd parity for the

electric part of the wave g(r)_ and vice versa for odd parity #.g(r)

(This follows from the free space solution to Maxwell's equations

-i_ = c V x Z). Consequently for the Poynting

scribes the flow of_energy

S - c g. x g_.

if we change r _ -r either g or _ (but not both) will change sign

and then S will change sign. Hence we have the condition that the

vector (which de-

(6.4)

Poynting vector always points away from the origin.

The fields can be written in the following general form

_ _ _ gr_*(_g (r.,t) = g(r) e -k_t + ) e_f_t (6.5)

_(r,t) _(r)e -imt + _*(r) Q_t
_- e (6",.6)

and if there are several frequencies present they my be considered

separately.

The fields can be expanded as electric and magnetic multipoles.

The electric multipole field of order £,m will be designated by

@_Z,m,r) and _E(%,.m,rZ and the magnetic multipole field of order _,m

will be designated by gM (_,m,r) and ,m,r). The same angular

momentum is carried away by electric and magnetic multipole radiation

of the same order %,m, but the two field types differ in their in-

trinsic parity. We can determine the parity as follows:
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Electric multipole, _ = (-i) L ' (6.7)

Magnetic multipole_ _ = - (-i) _ (6,8)

This meansthat the parity carried away by electric radiation is the

sameas that carried away by an emitted particle with orbital angular

momentum_ the sameas the radiation order _. Wehave the additional

result that the multipole field for Z = 0 is identically zero; that is,

the system cannot emit an electromagnetic wave carrying away zero angular

momentum.

As the radiation fields can be multiplied by arbitrary amplitudes,

and since multipole fields form a complete set, we can expandany field

satisfying Maxwell's equations as follows:

g(r)= _ I; AE(&,m)_E(4,m,r) + AM(_,,m)gM(_,,m,r) (6.9)
g=l m_-_

_5(r) -_1 _ AE (_,m) _E(_,m,r) + AM(_,m) _M(_,,m )m_-'- J_ •

(6.10)

The amplitude of the multipole radiation is determined by the co-

efficients AE(&,m) and AM(&,m) which in turn are determined by the

characteristics of the source • And the fundamental problem in deter-

mining the radiation transitions is to relate the amplitude coefficients

to the properties of the sourca.



-169-

Selection Rules

The selection rules which apply to nuclear radiation are the same

as those which apply to radiation from any other quantum system. The

total angular momemtum of the system must be constant duEing the trans-

ition from the state _b, that is

a : Jb+ (6.11)

As this is a vector relationship it puts the following restrictions

on the quanta emitted,

-Jbl a ÷Jb

I_ was previously stated that _ = 0 transitions are prohibited and

thus_ from equation 6.12 transitions for which Ja = Jb = 0 are for-

bidden. In the practical case of the nucleus it is possible to have

these transitions take place by indirect processes. An example is inter-

hal conversion (which is the interaction between the nucleus and the

outer electrons:causing a transition emitting an electron instead of a

photon) for which it is possible to have _ = 0 transitions. Once can

also emit a pair of photons, c_ a pair of electrons in a zero-to-zero

transition. But in astrophysical circumstances we are not ordinarily

concerned with double photon emission, nuclear pair emission or internal

conversion, and we shall not go into the theory here.

There are also _ selection rules arising from the conservation of

parity. While parity is not conserved in weak interactions it only

fails in electromagnetic interactions to an extremely small extent.
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The following table is a sunm_ry of the selection rules for the

lowest possible value of g, gmin L

(A) J _J
a _

Par ity favored Electr ic Radiation

L--IJa-%1

Magnetic Radiat ion

L : i_-Jbl+ !

except J or Jb = 0a

Par ity Unfavored

WaWb = (_l)Ja-Jb
+ i

L : I% -%1 + 1

except Ja or Jb = 0

L: I%-%1

(B) _ : Jbi o

Wa : Wb L = 2 L : i

except Ja = Jb = A2

_a = -Wb I, : i L = 2

except J
a

From Theoretical Nuclear Physics byB!att and Weisskopf, pg. 589.
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Therefore for all practical purposes it remains useful to talk ab_,ut

conservation of parity in electro_nagnetic transitions. The trans-

iton probability between two states @a and_ is proportional to

the matrix element H'ab"

H'ab = _Y_b (_ " A_ _, -adf (6.14)

where _ is the current operator and _ is the vector potential of the

emitted radiation. Now, A is proportioned to g and _ is a polar vector

(hence  rity)thereforetheparityor (7. )isoppositeto and

thus the same as _. From the integral in equation 14 we see that

H' vanishes unless
ab

'Wa = Wb for "even" parity radiation, where Wa = _b refer to the

parities of their respective _'s.

In referring to these transitions we will characterize an electric

transition of multipole order Z by EZ, i.e., E1 for an electric dipole,

E2 for an electric quadruple; and similarly for magnetic radiation, MI,

M2, etc.

In atoms the only important selection rule is that for electric

dipole transitions. The higher multipoles are retarded .relative to

electric dipole transitions and excitation by collisions takes place

sooner. In astrophysics there are cases of special interest where the

atomic source of radiation is at a low density such that collisions are

unimportant, in this case one has to be concerned with higher multipole

em; ssions.
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Wewill see that for the same_ value the probability of electric

radiation is muchgreater than magnetic radiation. Consequently _f we

have a parity-favored situation then electric radiation is generally

more important than the allowed magnetic radiation. For the parity-

unfavored transitions closer estimates of the transition probabilities

are needed, and it can happen that the E and M transition probabilities

are of the sameorder of magnitude.

Probability of Multipole Emission and Absorption

We want to relate the coefficients AE(Z,m ) and AM(_,m) to the

source producing the multipole radiation. To do this we consider the

source as a classical system of currents with periodic variations in

time':

j (r,t): j + j (r)e (6.15)

We will suppose that this distribution of currents is associated

with a small region of space having linear dimensions of order d.

Similarly the charge density associated with the current distribution

in equation 6.15 is

p(r,t) = p(r,t)e -_t + p*(r)e _j_t (6.16)

and by the continuity equation we have

(r) (6.17)

The radiation emitted by this system is treated as a classical problem
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in se_,_ral texts, we will use the results derived it, appendix B of

Blatt and Weisskopf

] £+2
AE(_,m) : -____£,_ (£ + I_Z _ Q£m

(2_*_):: C7--]

(6.18)

where (2Z+I)." = 1 (3)(5)(7)...(2Z-I)(2Z+I) (6.19)

_ =W=2WV
c C

(6.2o)

and Q_m : Zr y_m (e,_))p(r)dV
:(6.2].)

with the approximation in this equation subject to _d << i (6.22)

Equation (6.22) merely says that the wavelength is lo_g compared to the

dimensions of the system. Q_m is what we will call the electric multi-

pole moment of order 2.,m. The integration of dV exteads over :bhe volume

of the charge distribution, and the normalized spherical harmonics are=

i

Y_m(@,_) : (_l) _+m
(2Z);; [ (2_+i)_.(_+m)(£im)']2 (sin_m x

dZ+m [ (sin e)2_] exp(in_)
(d cos e)_+m (6.23)

and YZm : (__)m Y_'-m (6.24)

Similarly one obtains for AM

M _, •

2,+2
M_m

(6.25)
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where M£m _ -,[rZ Y £m V'(_x _) dV (6.26)
c(_ + i)

g

and _ d << i

These are not the only so.urces of radiation that can arise from

the system. There are intrinsic magnetic moments associated with the

spins of the nucleons; thus we must consider the classical analogue

of radiation resulting from a density of magnatization which varies Ln

a periodic fashion (corresponding to different spin orientations of the

nucleons]. We write this as

M (_,t) = M(_)e -:b_t + M*(r)e i_t (6.27)

The transition probability amplitudes are the same as before except that

we must define two new moments denoted by primes:

M_m -_rZY'_ (e, _)) (_'M)dV,_m

We can now write for the dipole moment with m = 0 :

(6.29)

%,o : dv

2c

Ql,O: _ ,[(7x_4.dV
2

(6.30)

(6.31)

(6.32)

q
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, ,(6.33)_

.A

A useful observation can be made by; noting that the current j is

of the order of magnitude of the velocity of the charges times the

charge density, 0 v where _ is a typical velocity. Neglecting the

spin part of the radiation we have

Z (6.34)

Qi,o ' C -

and this is generally true for all multipoles, at least an an approxi-'

mation. Since the speed of the nuclear charges in the nucleus is usually

much less than that of light, and as these amplitudes have to be squared

to get the intensities, one can see that the' instrinsic magnetic multipole

moment will be significantly less than the intrinsic electric multipole

moments.

Transition to _uantum Mechanics

We gradually make the transition to q_mntum mechanics by first class-

ically calculating the energy emitted per second and the angular distribution

resulting from the radiation. We divide the Poynting vector by the

energy contained in a single quantum in order to find the +rate of emission

specified quanta. We have

S = cg x _ (6.35)

and I-SI Z c g2 Z c i._2 (6.36)



where the _p_oximation is usedbecaus, t_ _s #,e _,_ _,m_t&e_y

t_msverSe. If we consider a large sphere of radius _ m_a_d the

J
g_urce, the absolute value of S will give the energy escaping per

square centimeter per second. The energy emitted into a solid angle

where U is the energy.

average them

(6,37)

As _2 and N 2 _r_ rapidly with time we will

<_2(r,t)>=2 _*G), _(_)

(_4_2(r,t>=2_@(r)"_¢r)
}

(6.3_

We can write the energy for pure electric multipole radiation of

order _, m as

UE (t,m;;) = c Z_m (8,_)IAE(_.,m)2!

12 ({.:' 40)

fG_)

The magnetic multipole ha._ a similar expression

UM(_,,m;r) = c Z_m (6,1_)IAM(_..,m)t 2 (,::.. 42 )

What we are actually ]nterestec[ i_ ;.s the tot?: :: :_.'gy _.: per
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second which we obtain by integrating equations 6.39 and 6.41 over

d_. The results are:

Electric radiation, UE(Z,m ) = c

2
2w_

IAE(P,,m)12 (6.42)

Magnet_radiation,_M(_,m):_.___IA_(_,_,)I2
P

(6.43)

And the total value for U will be a sum over all Z and m.

U = Z Z [UE(_,m) + _vi(_,m)] (6.44)
_=i m= -_

Emission and Ap21ication

We make the transition to quantum mechanics by dividing the classical

rate. of energy emission by the energy of the quantum to give us the

rate of quantum emission.

electric radiation is:

TE(Z,m) = UE(_,m ) =

The total probability of emission for the

c IAE(£;m) I2 (6.42)

"-4_ _2,+2 , _2
_):.' ('_)½ IQ£m + Q_m I]

(6._6)

And similarly for TM(£,m)'

2_+i
. TM(R,,m) : 8_ (_+ 1 )I ] _ ' "[(_*l)::

+ ' 121M_m M_m (6.47)

We can make some crude estimates of the size of the multipole

moments by writing
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QZm = ]_r£ YZ*m (e,¢) p(r)dV

E _ rZ dV = Ed Z

where E = total charge. Hence

(6.48)

(6.49)

TE(£,m ) N (U.d) 2_ (6.50)

and, with our previous assumption that _d<<l, higher multipoles become

less probable.

The Matrix Elements

Up until now we have treated the source as a classical system of

charges and currents. To calculate the matrix elements we have to

describe the source in quantum mechanical terms.

a1_logue of this current is

j (a,b;r) = ei- [*b (PSa) * (PSb) *$a ] (6.51)
2M

where P = - i_ V is the operator for the linear momentum of a particle

and M is its mass. The charge density is

p(a,b;r) = e@ b (r) @a(_) (6.52)

Using equations 6.51 and 6.52 we can write the multipole moments as:

Q_m (a_b) = eZ r_ Y_*m (e,_) _ b(r)$a(r)d_ (6.53)

.

= -e Z r Y_m (e,_) V.[ r x _(a,b;r)] d_ (6.54)
M_m(a'b) 2Mc(6+I)

The quantum mechanical

Equation 6.54 can be integrated by parts to show that the two terms in
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_' give equal results. Using the definltzon

Z = -ir x? (655)

one gets

, Mzm(a'b
= -e_ Jr Z Y (e,_) v. (6.56;

_) £m
_'_b @a ) d l

We also have to have expressions for the spin magnetlzatlon. The

i ! _ ands are
spin of each particle is h/2 and the wave functions @a b

functions of spin coordinates as well as r. For the spin coordinates

we have to specify whether the spin is up or down (+l). The spin gives

rise to a magnetization density M(a,b;r) and thls result in radiatzve-

.,;_i: _ _-:':;._d_i _: " .... "i . _-i .... il_, .. _ _ L, ; ..... : _ _ ' i _ ,i _,_ ; ,,_:!_

transitions from '_'a to V!b as follows:

. , 2Me

: : - < , : IL(_,.5_'F)

where _ _s the magnetzc moment _n Bohr magnetons and_ is the i_a_tl_

_-i "_,-, . _ _ • "
spin operator _it'h_"aompone£is, : _" _ " .... ] ".L ;,"_ _:_; _: _:"

(o (o-o) o,a = o" = o = (6.58)
x 1 0 , y , z:,_Q_-l_ ! _: :L ,.... ::_:_:x:;

.... i_.,The use of [ } here indicates a sum over the spins alone. Ex-

pression 6.57 must be inserted into the formulas for QLm and <m

_ L 7

"...g_D gelt,,taheim_tltipoie inoments: ,when one does this one finds that

<m (a,b)and M%m(a,b) are of the same order of n_gnitude, that is
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the magnetic radiation r,:._tLting f?c<_nc[wrents ,s .._w_[arab].eto magnet'c

radiation resulting from spin wriatJons. Howe v,,:r .,the eiectri_- rad-

iation resuf£tJng from spLn variations is s,[_ll coLl,_n'ed to that re-

_[t_ng ik'om charge ,_r Jations.

We apply our expressions to a system conL_.Jnir.g m'-_ny particles

by _mmil_ over the particles. In doi_ th:i.solle }ms t> remember that

protons have a charge and ne_trons dc not_ but all ne;_t_ons have a mass.

When you have c_rges of only one kind you can have an effect called

giant dipole resonance_ which is an induced resonance resulting in a

very strong, absorption peak for high energy I_hotons. The classical

picture of thJ.s resor_nce is a collective ......' : -O_uzl_a_,A_ of the proton

gas in the nucleLis against the neutron gas. The proton charge dis-

tribution undergoes an oscillation and can give rise to radiation

9mission_ or alternative]y_ radiation can set this oscillation into

effect. Hence the neutrons can play a role in radiation even though

they,.hav_no charge.

Using the subscript k 4.0 designate the kth proton or kth

.nucleon, depending on which we sum over_ we arrive at a final set of'

expressions for the multipo!e moments.

Z
i

Y '_ J;k)']': @a d _' (6.59)Qj_m(a']:')-=_e Y; _ _'k jr. _k' b
, k=l

_-4-i) M-%-- k-_

(6.60)
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A . * J (6.6i
Q'zm(a,b) = -i_ eh E _k [rZk YZm (Sk'_'k)_'_bb rk x _k'ba)d_ j

(_+--/_ 3--Mc k=l

, A . _j
Mzm(a,b) = -e___ Z _k _rZk Y_m (gk'_k)V' _bb_';÷_)d i (6,62)

2Me k=l

_'_'- _ .... _ _-+ _ "'_'+ is {....._'_"" {_ emittirg rad.

iation from the nucleus and it is necessary to emphas .<_.that it is not

a complete description of what is possible. For exampi/._: if nuclear fOrces

consist partly of exchange f'orees_ arising from the exchange of chamge

between neutrons and protons _ then we should have exchar_e currents and.:

[

exchange magnetic moments. Formally we should have included these here,

but since we are going to approximate our existing res<tlts to arrive at

/usable numbers it is not necessary to include it.

Transitions Between Low-L[in_ States of Nuclei

J

We want to make some estimates of what the multipoies in equations 6.59-

6.62 are likely to be for transitions near the ground state. Now if

the wave functions @a and @b Overlapped perfectly the maximum value for

QZm would be of the order of ZeR 9 where R is the nuclear radius. Our

expressions for the transition probabilities are, ....

?£ +i

T_(_,m) = 8_(Z+i) '_l 2
_[(2_+i) .._

IQzm + Q,_,m 12

/TM(_,m/) : 81-[i(_+l ) _2_+ 1. IMam + M'zm 12
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For electric radiation the transitlon probability ampl_tudes are

approximately proportiona± bo_( Q_m_ which _s at most equal to

Ze(KR)Z. Since we are assuming_R << 1 for the energies we are

concerned with about 1 Mev.), the transition probabilities decrease

rapidly with increasing multipole order.

Wewish to make a more general estimate of MZm / Q£m than was

derived in equatlon6.34. We can use R -I as a first approximation

the "div" operator in M_m , and the operator L will generate _ factor

which approximately cancels (_+i) -I. With these approximations we

have

M_m -_ _ (6.63)

Q_m McR

Similarly for some other ratios we have

M' (6£m Z I,_a N_ 2 or 3 .64)

Since IM I> 1

Q' I T (665)_m _ X _ _ x o _ _ : _ _ _ 10 -3

Q _m (Z--/i) _cc R Me Mc 2

!

The ratio Q_m can be neglected with respect to the other ratios estimated.

These correspond to the previous statements that the magnetic moment due
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to spin changes is comparable to the mgnetic moment due to currents,

but the electric moment due to spin changes is negligible compared to

the electric moment due to charges. We may estimate that

IMam+M' ml2 lO (6.661
\ McR

l%m12

One must remember that equation 6.66 is an extremely crude estimate and

that it can be change drastically by selection rules, details of nuclear

motion and details of nuclear structure.

We still need an estimate of one of the moments in order to establish

some absolute values. To do this we must assume some nuclear model and

a good choice is an independent particle model. One familiar version

of this model is the shell model, which gives a good description of

most aspects of nuclear matter.

In the independent particle model the quantum numbers of _ndlvldual

nucleons describe the state of the nucleus. Only if the two states a

and b differ in the quantum numbers of only one nucleon w±ll we have

multipole moments which are nonzero. For this reason we think of our

transitions as involvlng a baslcally unchanged nuclear core coupled to

one nucleon changing its state.

let us focus attentlon on one of the protons as It changes ±ts state.

We assume that in its final state the proton has zero angular momentum

and in its initial state has angular momentum _. In addltlon we assume

that the transition is parity-favored, which means that in the initlal
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state the proton's spin is parallel to _.

proton canbe written as,

The wave functions for this

Wa = Ua(r) Yzm(e'@)_ (6.67)

1

Wb : Ub(r) (4T_)-2 a (6.68)

where ff is a spin function corresponding to spin up, and Ua, Ub depend

only on the radial distance I#I

So Q£m(a,b) is now wrltten as,

Z _ . * dT (6.69)
Qzm(a'b) = e g _rk Y_m (Sk'@k) _ b @a

k=l

£

* (el'}l)1 2"" (a'b)l2= e ;r I Y Zm "Z Yzm(81'_l )

1 .

x(4w) -_ Ua(r) Ub (r) 2 dr (6.70)

where we have taken only the first term in the sum because we requmre

in our model that the rest of the nucleus remain unchanged.

On integration for the first proton the overlap wave functlons and

the angular dependent parts become unity. Therefore

I

QZm = (41_)-Z e Jf (6.71)

where JZ : _o rZ Ua(r) Ub(r) r2dr (6.72)

We do not know how the wave function for this proton is distributed
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over the nucleus and we must therefore be satisfied w_th an order cf

mgn_tude estlmate for JZ" Our simplest assumption will be to conslder

the wave fu_.ct_ons to be uniformly spread over the nucleus_ or

Ua(r) = %(r) = constant, r < R

Ua(r ) = Ub(r ) : 0
, r > R [ (6.73)

J

i

By normalizing the wave function the constant becomes (3/R3) Z, hence

:JR°r 3___r2e=s R (6.74)
R3 _)

The matrix elements for radiative transltions _have been reduced to

the evaluation of a s_mple integral whlch involves the wave functions

of the particles in the nucleus. Though the estimate _s rough it con-

tains all of the essential energy and radial variations. Therefore it

is a suitable standard for comparison when we want to take out well

known _mriations such as the energy dependencies of different transitions.

Actually U and Ub are not constant but oscillate for r < R and
a

exponentially go to zero for r > R. Therefore J_ should be smaller than

our calculations, sometimes by factors up to 30, and occasionally by

several orders of magnitude. These large deviations can occur in

electric dipole radiation where protons oscillate in a collective manner

against the neutrons, or in certain types of quadruple emission where

the nuclear surface ,s oscillating in some favorable fashion_ or by
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collectzve rotation of the nucleus.

Whenweput our estzmate obtained in equation 6.74 into the transition

probability formula we obtain:

2£+1

: 4.4(Z+I) , 3___ (E in 10 -13 )2Z 1021 -i
< _+31 (h_ ", cm sec (6.75)_[ (2%+i) ,,]2 197 .Mev]

2

_(_)~ 2o(_+=).'i_f 3 ),: Z[ 2Z+I)' < _+3

: 1._(_+1) -'_)'2( _ ,2Z+l -13cm)2_-2 -13 ' Me0 (R in l0 1021sec (6.76)_[(2_+I):'] 2 < 197

The actual lifetimes must be obtained from the transition probabilities

that have been corrected for internal conversions. Often the internal

conversion coefficient is known experimentally and then the results can

be corrected without requiring any knowledge of the parity or multipole

order of the transition. Monograms for the relations (75) and (76) are

published by R. Montalbetti in Canadian Journal of Physics_ 30, 660 (1952).

Transltions Involvln_ Hi_hl_ Excited States

We will be considering two basic reactions, emissions of gamma rays

following the capture of a particle by a nucleus, and the absorptzon

of high energy gamma rays by the nucleus. These reactions will usually
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involve high energies (5-25 Mev.). When a hlgh energy particle is

incldent on the nucleus (_ 8 Mev) and forms a compound nucleus there

will be a large number of lower lying levels, and our calc1_latlon

of the outgoing radlat_on must _nvolve the sum over all those lower

1 "_r _ "n o" I _vel _

S_ R_es

There are relations called sum rules whlch limit the size of the

n_trix elements for radiative transitions in nuclei. The sum rules

apply to the sum of the square of the transition matrix elements

between one state "a" of the nucleus and all other stationary states

%" As the sums are fotmd to be flnite they place llmits on the total

transition probabilities into and out of any state. One result is

that when the cross section for photon absorption (from the ground

state) is integrated over all photon energies we get a finite value.

An interestlng consequence of the sum rules _s that _f some

partlcular transition is inhibited by the reaction mechanism in some

energy range_ then that type of transltion will have to be stronger _.n

some other energy range I,o satisfy the sum rules.

From Blatt and Weisskopf we note the following sum rules:

2_M _ (Eb Ea) ..IQijO(a'bll2 2- :3 NZ e (6.77)

h2 b
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where M = mass of nucleon

Eb < E are transition statesa

QI,O is the E 1 _tr_.x element with m=O

N = number of neutrons

Z = number of protons

A = _ss number

e : electronic charge

and similar rules exist for QI,-I and Q
i,i

This sum rule is independent of the details of the nuclear structure

as _t _nv01ves only natural constants• However, th_s _s an overslmpli-

ficatlon because the sum over b is supposed to be over the statlonary

states of the system. In reality the nuclear states are not stationary

but decay by photon emission, or (at higher energies) by particle

emlsslon. In particular, in heavy nuclel when the excltatlon is _ 15 Mev.

the widths of the nuclear states become greater than the distances between

states and we have a continuum. In addition to these errors, the elec-

tric dipole matrlx elements can be augmented by charge exchange forces

acting between the nucleons• The exchange force means that the position

of the charge is changlng more rapidly then that of the nucleons. Now

the charge velocities are greater than the nucleon velocities, and slnce

the nucleon velocities were used to obtain the sum rules the rules must

be modified in accord with the charge velocities (though we will not

go _nto th±s here).

Another d_pole sum rule is,
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E (_-Ea)2 IQ1;O(a_b)_2 3 <h---_ 2 A ,: <(kZ1ek Pkz)2>a
b

(6.78)

A

which depends on the expectatlon value of the operator (E
k=l

ek ' pkz )2

in the state a, as well as the natural constants.

We also define the effective charge of the nucleons

ek' = e (i- }) for protons

= -e Z for neutrons
A

(679)

and pkz(a,b) = i..._.M (Eb-E a Zk(a;b) (6.80)

the momentum operator, where zk(a,b) is the position operator of the

transition from a - b.

We can evaluate this expectation only if the wave function of the

state is known. Instead we will estimate the expectation by assuming

no correlation between the momenta of the nucleons_ i.e,_

(Pkz Pk'z ) = 0 for k _ k', and by letting all the squares of the momenta

components be equal, (p2 > T p2/3 , where p2 represents the average
kz a

square of momenta of a representative nucleon in the nucleus. Hence

2 2
-- e NZ _ (6.8].)

bz(_-_)2 l%,o(a'b)l2 (4_)-1 _- <_,)

A

s_nce 7

k=l

(e'k)2 : Ze 2 N2 + Ne 2Z2

A2
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2 2
= e NZ (N + Z) _-e N_ (6.82)

A 2 A

In the two sum rules discussed one involves (Eb-Ea) to the first

power, the other to the second power. With both sum rules it is possible

to say something about the _mean energy of the transitions.

In a similar manner we can express sum rules for higher multipole

trans it ions :

z

IQzm (a'b)12 = e2 ( I_=i r_k YZm (ek'#k)12>a (6.83)
b

The average vBlue of this general sum rule can be estimated by

again neglecting correlations, and assuming a uniform distribution for

the nucleons within the nucleus. As an extremely rough estln_ate we

have,

l zm(a,b)l2N 3 Ze2 R2z (6.84)
b

where R is the nuclear radius. For addztonal sum rules the reader is

referred to Austern and Sachs, Physical Review 81, 706, 710 (1951).

Estimates of Matrix Elements Involving Highly Excited Nuclear States

Our previous estimates of the matrix elements for the transition

probabilities between low-lying levels_ were based on two simple but

extreme models: The independent particle model and the liq_.id drop

model. For high energy regions of nuclei (75 Mev ) we find a large
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numberof nuclear levels, greater in numberthan e_ther model predicts.

The large numberof levels leads us to suspect that the previous trans_

]tion probab_l_tles would be too large if applied to levels differing

greatly in energy. In addition, since the nucle± have denslt_.es which

increase exponentially with energy_ the transition probabilities

arising out of the ground state would very rapidly diverge when inte-

grated to =. A diverging result contradicits the sumrules, hence

weconclude that the matrix elements for transitions to highly excited

states are muchless than our previous estimate for low-ly_ng states.

It is this reduction in the intrinsic m_trix elements which will concern

us here.

We will conslder two overs_mpllfied models _n our attempt to find

the new n_trix elements for transitions. Assume that the nucleus is

composed of only one charged particle and that the other particles are

all ne_Itrons. In model I there is no interact_ion between nucleons;

they all move independently of each other in a common p,>tential V.

T!Ais is similar to a problem in virtual level theory where it is found

that _ - particles in a potential well give rise to equally space virt_l

levels. Hence model I l_as equidistant quant_n states with energy spacing

. Because the total energy I%7 can be constructed in many ways from the

energies n v of the individual nucleons (n < N are integers), the levels

of the system will be highly dege_Lerate.

In model II we introduce interactions between the nucleon:_ j where

the interactions are weak. By weak we mean that a level of the
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system at energy E will have a wave function which is a linear super-

position of the wave functions in model I for levels E' = NV near E.

In model I radiative transitions are assumed to take place

between states which differ solely in the state of the proton, but

which are identical as to the states of all the neutrons. Let us

consider two energy levels_ A and B_ which are degenerate to different

amounts and where EA > EB.

A

........

For every component in B (the lower level) we can find a com-

bining level in A (the upper group) by raising the proton up by

(EA-EB)/V steps. The figure above illustrates how we can combine

every level in the lower group with one level in the upper group, but

not viee-versa.

•Let the matrix element for some given type of transition be called

Qo" We assume that Qo is the same for all possible transitions in

model I, regardless of energy difference (EA-EB) _ or selection rules.

These assumptions will help us to single out the basic principles of the

problem.

We now consider model II with its weak interaction bet%_en the

nucleons. As it is a weak interaction the degenerate levels at A are



split by amounts small comparedto <J_the energy spa_'ing. The ,_ho._"

aspect of th_s model is that the wave f_.mction for each iem_[ _ a

l_near combination of the corresponding degenerate levels _ m,_dei[I.

Onethe average each componentlevel of group A w_ll be assumedto

to_ contribute equally to the combination similarly for B Nowthere

will be transitions between all palrs of levels in the t_o groups,

s_nce each energy level in A contains a s1_l]_ partof that level of model

I whlch combineswith a speclfic level ±n group B. Wecall the de-

generacy (or number of levels) of group A_ _ ; that is_ gA is a

statistic_ weight of the levels. Wecan write for the transitions

between the specific levels a in A and b in B the relation_

IQ(a,b)2 ao2 (6.85)

gA

Notice that the matrix element squared is inversely proportional

to the degeneracy of the upper group of levels and that the degeneracy

in group B does not matter.

In model II we now let the interactions between the nucleons in-

crease. Q_alitatively expression (85) should still hold in that

IQ(a,b)l 2 should be inversely proportioned to the number of levels

near the transitkor_ level. By near we mean a constant energy intervai

about the level in which we are mnterested. We can restate this rule

in Blatt andWeis_kopfterms: The square of the matrix element between

two levels E and Eb is approximately proportional to D(E_ the averagea

level distance at the upper level. We formulate this law as_

(IQzm(a,b)I 2) av : qzm (Ea'Eb) D_(E>) (6._36)
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where the left hand side is an average between the lower level and a

large numberof upper levels near E>, the upper energy. DZ (E>) is

the spacing between the levels, near E>_ which are combining with the

lower level to form the transitions which we are evaluating. Con-

sequently we concentrate most of our uncertainty into the function

qP.m(Ea'_)' which, should be a slowly varying function of Ea and. Eb,

at least compared to the exponential behavior of D(E>).

We can obtain some useful information about _zm(Ea,Eb) from our

previous sum rule estimate,

Z ''IQzm(a,b)l2"_ 3
Ze 2 R2Z

b 2Z+3

For simplicity we assume that E is the ground state, E
a a

now replace the sum over b by an integral,

= 0. We can

Z l%m(O,b)l 2 _ ._ (IQ£m(0,b)12> av d_Eb (6.87)
b 0

= _0 qzm(0'Eb ) dEb
(6.88)

Now from the sum rule the integral in equation 6.88 must converge,

hence qzm(Ea, Eb) cannot be a constant but must decrease at high energies

Eb. We can roughly estimate equation 6.88 by assuming maximum energy

E max, Z' and zero for Eb > E max, Z" We can get a relation for qzm

(Ea,Eb) over this range from the sum rule:
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E
Jo (o,%1%=Somax,%(o,%) _ : q_ Emax_ £

(6.89)

hence from equation (84)

2 R2Z
q_ E max_ _ 3 Ze (6.90)

We can now ge back and evaluate qz in terms of the matrix element

estimates made in connection with the independent particle estimates

of transition probabilities between low-lying states. We had,

QZm = i e JZ

r_= ,l: U (r) Ub(r) r2d_rJ_ Jo a

and if U (r) and _(r) are constant inside the nucleus and zero outside,
a D" -

J_ _ 3R _ (6.91)
Tb_T

Now we let the distance among the combining low-lying levels be DO .

Then

qz - ( IQ_m(a,t)12)av/DO (6.92)

0
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= < 2 e2R2., 4_p o

(6.93)

we can now solve for E from equation 6.90
max

2
{_____] Z,e R2_ 1

E max, Z _ \ 2Z+3] _ q_

"2 R2Z < _)2 4_9N <2_) Ze 0

(6.94)

letting (£+3)2/3(2Z+3) -- 1

E

max_ Z _ Z (6.99)

DI0

We _ke a sample calculation for medium weight nuclei (Z _ 50);

letting DO _ 0.5 Mev. we get E max_Z _ 25 Mev. By our previous assumptions

q_ can be considered a constant up to energies of the order of 25 Mev.

Actually our results are highly uncertain because our assumptions were

highly simplified. Our estimate of the wave functions for the independent

particle model were crude; we neglected both correlations between nucleon

motions and the oscillatory character of the wave functions inside the

nucleus. In addition the estimates for the sum rule neglected

correlations. While it is possible that these omissions may partially

cancel each other, it is more likely that the estimate for the maximum

energy is off by a large factor in either direction. These difficulties
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may cause us to seriously question the validity of the estimate for

E1 transitions, but it represents the best that we can do.

So far our estimates have referred to electric multipole radiation.

we have shownbefore we can take iQ_h/Mc_)2 as an estimate of theAs

ratio of the magnetic to electric transition probability. An important

point is that this ratio is independent of the energy transition. Some

results of Goldhaber and Sungar suggest that one should empirically

modify this ratio so that it becomes(_cR)2 for the magnetic to

hypothetical electric transition probabilities. At the sametime we

would also makea rough estimate that the ratio of the real to hypo-
-2

thetical electric is of the order of i0 In any case the upper

limit to qz will apply to magnetic radiation as well as to electric

radiation.

Radiative Capture of Neutrons

We assume that a neutron enters a nucleus and forms a compound

state Ec3 with a mean lifetimeT (E c) before disintegration. We define

the width of the state as,

r c)= /mE c) (6.%)

This relationship is similar to the uncertainty principle and expresses

_as an energy. I_Ec) describes the energy half-width of the state c
a
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and is _ times the decay rate. We can write _as a sum of partial

probabilities of decay by different processes; hence we can represent

the total probability of disintegrated as,

F(E c) =Z F (Ec) (6.97)
i i

Since we are considering cases where radiation is emitted by various

electric and magnetic multipoles we write rra d as:

l_rad : E (r +I_ (6.98)L:l EL ML)

and each of these, in turn, are the sums of partial radiation wldths

for th_ varlous lower levels_

r : z r (c,b)
EL b EL

,E b < Ec (6.99)

wherel_E£ (a,b) is non-zero only if the parity and spin differences of

rc,b allow a transition. A similar relation holds for the magnetic

trans it ions.

The radiation width will exhibit a smoother behavior than a particle

emission width, because the total radiation width does not vary greatly

when going from one compound level to another within a given energy

region. The observed radiation widths do not vary much because they are

made up of a large number of partial widths for individual multxpole

transitions to individual lower levels.



-199-

Wewill now estimate the partial radiation width for electric

radiation of order _ between an upper state "a" and a lower state

T_ T! •

Starting with equation 6.46, (which we rewrite),

%(Z,m) = 8n(Z+l) 2%+1 IQzm + QZm, I

and using equation 6.86,

2

<le_mCa,b)i>av = q_m (Ea' Eb) D£(Ea)

and equation 6.9_

e2R2£%~

we get,

<rE %(a,b)>a_
2

_8(L+_)(2@+i) e
2

_ (£+3)2[ (2_+i) .':]'

(6.1oo)

where a factor (2_+i) has been zncluded in the numerator to make a rough

correction for statistical weights; by which we mean that for each %

value the multipole radiation can have 2_+I different m values. While

this correction is not exact it is a simplified correction and is better

than no correction. And, as usual, the partial radiation width for

magnetic transitions, l_M_(a,b), is estimated to be smaller than r_ (a,h)

by the factor _lO (_/McR) 2
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Wecan now flnd the spectrum of the initially emitted gamma_'ays

But because there exists a series of lower energy intermediate states

which emit gammarays, the observed spectrum is not the sameas the one

we estimate. Weobtain the initial spectrum by multiplying the partial

widths by the energy level density of the final states, [D_(Eb)]-I...

The emitted radiation of order Z then has the following energy dis-

tr ibut ion,

U_(_)-_ (_eJ)= C_(_) 2£+I [Dz(E a - h_ ?i (6.101)

where C_ is a constant derived from the factors in the previous formula

and is independent of h(_'. This distribution favors the emisslon of

high energy quantum radiation due to the presence of the factor of

(_)2Z+I. DZ is a rapidly decreasing function of the energy

F_ = E - _, and this factor favors the emission of low energy quantum
D a

radiation. If we ass,__ne the level density to be,

W(E) = D-I(E) = C exp [2/aE ] (6.1o2)

and use appropriate values for _, then we find that the emitted spectrum

has the following form,

relative

units

relative units

8
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These distributions are smooth whereas they should be discontinuous

peaks. However, the peaks are only important for transltions gonug to

states near the ground, where they would be widely spaced. Hence for

most regions we can use the smooth curves.

_.'....... ÷_÷- the _7,,+_ _7_I_ _ I_ We replace the sum

over the partilce emission widths by an integral,

E
a 2Z+I

rE_ 18(_+l) (2_+1) __e2 (_.)2_ _l _ (_g_) D_(Ea)_ d(_)
#(Z+3) 2 [ (2_+1) '. .,]2 hc DO 0 D_(E a _u_)

(6.1o3)

and, according to our usual estin_tes of magnetic versus electric

multipole streng%h,

_M6 i0 ___2 FE6 (6.104)

These formulas can be applied to the case of capture of slow

neutrons (E n = .025 ev) followed by T-ray emission, where the energy of

excitation, E , is equal to the neutron binding energy (about 8 Mev.).
a

There are measurements for the radiation widths of slow neutrons to which

the theory can be compared.

We present some results arrived at by C. J. Hansen for the E1 rra d

calculations. When we have many excited states to sum over, in general,

we need only consider those excited states which can be reached by elec-

tric dipole transltions in order to estimate the total radiation width.
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Wesaw earlier that the electric dipole transitions are most likely

to be strongest, with magnetic dipoles and electric quadrupoles less

strong. For certain nuclei, called self-conjugate nuclei, in which

the numberof protons is equal to the number of neutrons, the electric

dipole transitions are hindered. They are hindered for transitions

between those states with the sameisotopic spin and for these states

wemust gobeyond the electric dipole to get results.

Wewrite equation 6.100 with Z = i and get,

E1
2 2/3

he ?_J suitable
levels

D(UIE 3

DoD(U-E) (6.105 )

We rewrite this with all quantities in Mev., but F in ev.,

E1

i_ (Jw) : .296 A 2/3 _ D(U, J,_) U E 3 dE (6.106)

DO J_ _0 D(U-E,J,w)

The term DO acts as a normalization factor, although it can also

be interpreted as the single particle level spacing. If we assume the

equality of the parity distributions and neglect the exponential form

of the J dependence of the level density then the sum over J and

is simple. Summing over all allowed values of J,w of the daughter

levels consistent with the electric dipole selection rules

(u J = + 1,O; no 0 _ O; parity change) we get the term
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[2(J+1)+i]+ _2(J-i)+i] _
2J + 1 2J+l

= 3

hence

I" : 0 _n A2/3 I_/TT_ _TT E3dE
._

Do Jo
(6.103)

This result was used in a paper by J. Truran, C. Nansen, A. G. W.

Cameron and A. Gilbert, Thermonuclear Reactions in Medium and Heavy

Nuclei. They calculated these widths and compared them with experimental

values for a large number of nuclei with A > 50. Their estimates

for DO were; Z O__ 230 Mev for A > 50, D O__ 400 Mev for A > 50.
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7. Nuclear Beta Decay

History and Introduction

Experimental evidence that beta rays are identical with

ordinary electrons and positrons is compelling. The charge-to

mass ratios for the two agree within experimental limitations,

and so do the charges. The observation of orbital electron

+
capture as an alternative process to 8 emission indicates

that the nucleus can accept an ordinary electron in order to

accomplish the same transition, and this is taken as confirma-

+

tion that the B emission is just emission of an ordinary

positron. Furthermore, _- particles are not captured into

occupied orbits, showing via the exclusion principle that they

are identical with the electrons already occupying those

orbits.

Emission of electrons from nuclei suggests that electrons

are a permanent part of nuclear matter. Before the discovery

of the neutron in 195 , a proton-electron theory of the

Accordingly, 7NI4 was thought tonucleus was popular.

consist of 14 protons and 7 electrons, 21 nuclear particles

in all.

Strong arguments against this theory can be made.

Both protons and electrons are fermions, particles of

9
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spin ½. So 7 NI4 would have an odd half-integral spin

since its nucleus contains an odd number of fermions, i_ut_

angular momentum of 7NI4 is J = i, andthe measured

similar results hold for other typical odd-odd nuclei.

Another argument against the proton-electron nuclear

theory is presented by the uncertainty principle. If we

are to confine an electron to a nuclear volume of dimension

Re we must necessarily have a momentum distribution

extending to momenta of magnitude Pmax_ _/R . In the

extreme relativistic approximation, the corresponding

kinetic energy is Ema x _ _c/R. Since R _ 10-12cm,

Ema x _ 20MeV. In order to keep the electron within the

nucleus, the potential energy of attraction between elec-

trons and protons must be sufficiently strong to over-

compensate this large kinetic energy, but from measurements,

there is evidence against such a strong interaction.

It seems that electrons emerge from nuclei yet cannot

exist within nuclei, and this apparent contradiction is

reminiscent of the situation encountered in atomic

structure in the theory of emission and absorption of

light from atoms. Electromagnetic radiation does not seem

to be an integral part of atomic structure, but electro-
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m_._._.,=ti, radiation emerges from atoms, according to the

theory, when an atom changes i!:_ energy state. One may

say that a light quantum is created at the moment of emission,

but it is well to note that the electromagnetic field and

the atom are in interaction all the time. This continuous

interaction shows up in steady disturbances such as the

Lamb shift and natural level width, and thus while electro-

magnetic radiation is not an integral part of atomic

structure as such, it has a kind of latent existence in the

atom.

Before we become too enthusiastic about the analogy

of emission of beta rays from nuclei with extra-nuclear

transitions 0 there are some additional difficulties to be

confronted. These concern the apparent lack of conser-

vation of energy, momentum, and angular momentum in beta

decay.

Atomic transitions consist of the change of the

electron structure outside the nucleus from one well-defined

state to another with the emission of a quantum of electro-

magnetic radiation. The emitted quantum carries away the

energy and momentum and angular momentum liberated in the

transition; consequently the energy _w of the light quantum
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is determined, and its momentum is equal and opposite to

the momentum of the recoiling atom. By analogy, we should

expect that a beta particle is emitted when a nucleus

changes from one well-defined state to another and that the

beta particle should carry away a definite amount of

energy and its momentum should be equal and opposite to

the momentum of the recoiling nucleus.

This is not observed. Instead electrons are emitted

with a continuous distribution of energies smaller than

some maximum total energy Ema x. The electron does not

Figure 7.1
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always leave in the opposite direction from the recoll

nucleus. Furthermore, angular momentum is not conserved

if we consider only the two body nucleus-electron problem.

For example, the beta decay of 6 c14 into 7 NI4 has been

observed, and the nuclear spin of &C 14 has been measured
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i4
as 0, that of 7 N , as i. For the transition, the

change in nuclear angular momentum is AJ = i, an

integral amount. The electron, a fermion, has spin ]_

and conservation of angular momentum is apparently

violated.

Pauli proposed the neutrino hypothesis, developed

largely by Fermi, which effectively resolves these grave

difficulties. The neutrino hypothesis assumes the exist-

ence of a neutral particle of small mass and half integral

spin emitted simultaneously with the observed beta particle.

Beta decay is then a three body problem instead of two,

and the three particles share the energy, momentum, and

angular momentum available from the nuclear transition.

The maximum momentum exhibited by the recoil nucleus

is in accord with the momentum calculated under the

assumption that an electron of energy E is emittedmax

in the opposite direction. Thus the beta particle gets

when the neutrino is emitted with
its maximum energy Ema x

zero momentum (hence zero kinetic energy), in effect

returning to our dynamical two body problem, which has

a unique solution in classical mechanics.

Conservation of energy requires that the difference

between the maximum energy E of the beta particle and
max

the total available energy E of the nuclear transition
o
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gives a value for the rest energy m c 2 of the neutrino.

Experiments have put an upper limit of 25 key on the rest

mass of the neutrino, zero within experimental error, and

it is demanding theoretically that the neutrino rest mass

be identically zero. Conservation of angular momentum can

be achieved by assigning some half-integral spin to the

neutrino, but calculations carried out with neutrino spin

3/2 _ do not give the observed shape of the beta ray

spectrum; so a neutrino spin 1/2 _ is most attractive.

This makes the neutrino a zero rest mass fermion, analagous

to the photon which is a zero rest mass boson. Being

a fermion, the neutrino should have an antiparticle-

the antineutrino. The estimated cross section for neutrino

induced beta decay is extremely small, _i0 -44 cm 2, and so

experimental detection is difficult. Nevertheless 0 Reines

and Cowan (1953) were able to detect antineutrinos from

1
the beta decay of fission fragments in a nuclear reactor.

A significant negative experiment bearing on the distinct-

ness of the neutrino and antineutrino was carried out by

Davis who showed that

C137 + _- A 37 + e- (7.1)



does not occur, but he expects to see

C137 + v - A37 + e- (7.2)

using neutrinos from the sun using a i00,000 gallon tank

of tetrachlorethylene (C2CI 4, a common cleaning fluid)

deep in a South Dakota mine 0 thus establishing experiment-

ally the existence of the neutrino itself. In addition to

the neutrinos and antineutrinos associated with electrons_

there appear to be distinct neutrinos and antineutrinos

associated with muons, making four altogether. Because

of the neutrinoDs phenomenal penetrating ability (mean

free path about a light year in solid lead), massive

detection systems coupled with sensitive coincidence cir-

cuitry are being assembled to scan the universe as the new

field of neutrino astronomy takes form. The neutrino has

come a long way since Pauli.

The Neutrino Hypothesis and the Shape of the Beta

Spectrum.

Selection Rules for Allowed Transitions

Suppose as a typical case we have a nucleus in which

a neutron is <onverted into a proton and an electron and an



antineutrino is emitted:

n_ p + e- + _ (7.3)

We wish to predict the shape of the energy spectrum of

_**_ _..,_u __**o w**xc,, we can compare ..,4+_

experiment. We shall first make the simplifying assumptions

that the coulomb interaction between electron and residual

nucleus can be neglected and that the recoil energy of the

nucleus can be neglected. The latter approximation is a

good one since the mass of the nucleus is always much

larger than the electron mass, but the neglect of Coulomb

interaction is reasonable only for the lightest nuclei

(7. < I0 ) and sufficiently high electron energies.

We begin, as Fermi did, by using a simple phase

space argument, assuming all possible divisions of energy

between neutrino and electron are equally likely. Consider

the phase space for the two particles, electrons and neutrino.

Not all of this phase space is accessible since the sum of

the energies is constrained by the law of conservation of

energy

E e + E v = E o (7.4)



We postulate that the probability of a disintegration

leading to a specified accessible volume of phase space

is directly proportional to that volume. After the dis-

integration, the electron is contained in the volume element

dV e and has a momentum with magnitude between Pe and

Pe + dPe in a direction within the solid angle element

d_ e. Similar statements hold for the neutrino, denoted

with the subscript _ instead of e. We express the volume

of this state in six dimensional phase space in its

natural units, h 6

space =

(2rT_)

= (2_) 6. This gives volume in phase

-6 (pe2dPedQedVe) (p 2dp dQvdV_) (7.5)

Now (7.4) states, if we hold electron momentum (and energy)

constant_ that we can write

dE ° = dE v (7.6)

and if we assume a zero rest mass for the neutrino (we

shall return to this point later), we can write also

E 2 2c2 (7.7)
v = Pv

so th at



E dE = E dE = p c2dp_ (7.8)

Now we can write the neutrino momen_'_m as

/Spv_ dE ° = E___ dE ° (7.9)
dp_ = --_- c2pv

c Pe

where the subscript Pe means electron momentum is kept

constant during the differentiation. With (7.9), and

using (7.4) and (7.7),

Ev = F.,2 (Eo_E_)2

p 2dp_ = c--2 pvdE° _ dE° = c3 dEo (7.10)

With (7.10), the phase space volume (7.5) assumes the form

p(Eo)dEo, where p(E o) is the density of final states per

unit range of total energy familiar from perturbation

theory and we can write

p (Eo) (2_)-6c-3 (Eo-E e) 2 2. - V= Pe aPedQed edNvdVv (7.11)

According to our assumptions, p(E o) is proportional to

the probability that the beta-decay leads to this particu-

lar final state.

Equation (7.11) predicts that the emission of the

electron and the neutrino into all directions is equally



likely; in particular there is no angular correlation

between the directions of emission of the two particles.

And, if we imagine that the whole system is enclosed within

a large box of volume V, we are equally likely to find the

electron and neutrino in any region of the box. These

statements result from the extreme simplifications used

so far and will be modified later.

Since we are not interested just now in the position

of the emitted particles within our imaginary box, we

integrate over dV e and dV v. We shall also not be concerned

with the absolute direction of emission of the electron,

but only with possible angular correlations between electron

and neutrino. We therefore measure the neutrino directions

with respect to the direction of the electron0 that is,

replace dQ V by dOe_ , where %ev is the angle between the

electron and neutrino momenta. Integrating over the angles

for the electrons gives the final phase space factor

V 2

O(Eo) = 16n_6c 3 p_(Eo-Ee)2dPed_ev (7.12)

If the direction of the neutrino (or, more practically,

the direction of the nuclear recoil) is not observed in

the experiment, we must integrate over dOe_ also, which
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gives an additional factor of 4_. The appearance of the

volume V is purely formal, and will drop out later.

The main result contained in (7.12) is the desired

shape of the beta-spectrum. The distribution-in-momentum

of the emitted electrons is given by

P(Pe)dPe = CPe2 (Eo-Ee)2dp e (7.13)

where C is a constant. For small momenta, Ee<<E o, and

this distribution is proportional to pe 2-, for large momenta,

2

Ee_ E o, it is proportional to (Eo-E) It vanishes ate

both limits and has a maximum in the middle somewhere.

Such a curve is shown in figure 2. Note that figure 2

does resemble the experimental curve in figure i.

Equation (7.13) is the basis for a method of analysis

of beta ray spectra to determine end points, called

the method of Kurie plots. In making a Kurie diagram,

one takes data from a measured beta spectrum and

plots the expression [p (pe)/pe2 c] _, where P(pe ) is a

measured quantity, versus E e. Motivation for this

selection is easily seen by writing (7.13) as

[p(pe)/pe2C] _ = (Eo-E e) (7.14)
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Figure 7.2
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This should yield a straight line, in our first approxi-

mation, with intercept E o, the end point of the spectrum.

This metho<1 was long used to determine all the beta _ecay

end points, and in fact it is by determining how well the

measured spectrum goes linearlz to zero on the Kurie

diagram that one may determine upper limits on the

neutrino mass. One can see that if the plot did not go

linearly down to the axis, but instead curled over and

fell short as shown in figure 3, one would conclude

that a portion of the total energy available in the beta

decay was being taken up in the finite rest mass of the

neutrino. We have assumed, of course, that only

one neutrino is emitted.

Even though we ha_ze predicted the rough features of

beta ray spectra with the neutrino hypothesis and our

simple phase space argument, before comparing our

results for the detailed spectrum with experiment, we

\ &/A

i'_ cure



must include the effect of the Coulomb force between the

beta particle and the daughter nucleus.

We shall assume that the decay probability is a

product of four factors:

i) The a priori probability, _ (Eo), in

equation (7.12) .

2) The probability of finding the electron

within the nuclear volume, i.e., _l_el2dVe extended over

the interior of the nucleus.

3) The probability of finding the neutrino

within the nuclear volume, i.e., _l@_)12dV_ over the

interior of the nucleus.

4) A specifically nuclear factor which

we will describe as the nuclear matrix element which

governs the rate of the beta decay.

We can understand the need for factors (2) and

(3) by considering the inverse process where an electron

and neutrino are put into a box of volume V together with



the decay product nucleus Y. The rate of the inverse

beta-decay, Y+e+_ : X, is proportional to the probability of

having Y interact with e and v at the same time. Hence the

factors (2) and (3) follow for the inverse beta-decay if

we assume that the interactions involved are essentially

point interactions. Since the beta-decay and the inverse

beta-decay are related by the general reciprocity law for

inverse processes, we can conclude that factors (2) and

(3) apply also to the beta decay itself.

Now consider the orbital angular momenta %e and %

which the electron and the neutrino may have after emission

from the nucleus. For the ener6ies we are considering_ the

wavelengths of the electron and the neutrino will be much

larger than the nuclear radius and so we can write approx-

imately

and

._ l_eI 2dVe

nuclear
interior

2
.rl <) dL

nuclear

interior

, 2VNi_e (o)I

10v (O)l2V N

(7.15)

(7.16)



where VN is the nuclear volume and _(o) is the wave

function evaluated at the center of the nucleus. The

wave function _e for a free electron of wave number

Ke : pe/_ emitted with orbital angular momentum %e,

can be written

= (Ker) J£ +I (Kere) (7.17)e e
e

where J is a Bessel function. The wave function _e

for the first few values of % looks something like
e

figure 4 where r is the distance of the electron from
e

the nuclear center. We see that _ (o) vanishes except for
e

S wave electrons, those emitted with zero orbital angular

momentum. The same consideration holds for the neutrino.

We conclude therefore that the electron and neutrino

are emitted only with zero orbital angular momentum as

long as the approximations which we have introduced are

valid. This rule is in agreement with the intuitive

notion that the emitted electron must appear to come

from the emitting nucleus. Zero orbital angular

momentum means zero impact parameter, i.e., an electron

direction straight away from the center
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of the emitting nucleus. This statement is subject, of

course, to the qualifications imposed by the Heisenberg

uncertainty principle.

Of course the average values of l%e(r)I 2 and I%_)(r)l 2

are not exactly equal to their respective values at r = 0,

and an emission of the light particles with an orbital

angular momentum different from zero is possible, although

its probability is relatively much smaller. We shall call

"allowed transitions" the transitions in which the electron

and neutrino are emitted with zero orbital angular momentum0

and "forbidden transitions" the relatively weaker ones in

which the particles are emitted with an orbital angular

momentum different from zero.

Now consider the intrinsic spin of the emitted

particles. Both have a spin ½. These two spins can com-

bine to a total intrinsic spin 0 (the singlet case) or 1

(the triplet case).

If electron and neutrino are emitted in the singlet

spin state, the only angular momentum carried away by the

two light particles is the orbital angular momentum, and

that is zero for allowed transitions. Hence the angular

momentum of the daughter nucleus must equal the angular
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momentum of the parent nucleus. Furthermore, since both

the electron and the neutrino are emitted in S states

(_ = 0), and S states have even parity, there cannot be

any change in the parity of the nuclear wave functions.

We therefore get for the case of singlet emission, the

Fermi selection rules for allowed transitions:

_J = O; no change of parity (7.is)

(We have previously discussed the nonconservation of

parity in weak interactions, but in the present context

it is still useful to consider parity in this way because

we are talking not about the relative parity of the electron

and the neutrino between themselves, but rather with the

parity of the nuclear state to which they are linked; so

in this simple approach we say the spins of the two nuclei

are the same and that there is no parity change.)

If the electron and neutrino are emitted in the

triplet spin state, that is, with parallel spins, we obtain

a different selection rule. No orbital angular momentum

is involved in allowed transitions_so the total angular

momentum carried away by the two particles is just their

spin angular momentum which is now unity. Since the parity
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operation does not involve the spins, the parity selection

rule is as before. The selection rule for triplet emission,

the Gamow-Teller selection rule for allowed transitions is

AJ = +i or 0 (except no 0-_0 %ransi_iors);

of parity

no change

(7.19)

Since the spin change is a vector spin change we surely

could not start with a zero nuclear spin, emit one unit

of spin angular momentum, end with a nuclear spin zero,

and conserve angular momentum.

The selection rules (7.18) and (7.19) were made

using a nonrelativistic treatment of the electron and

neutrino, but of course the neutrino is always relativistic.

It turns out, however, that (7.18) and (7.19) correspond

to the selection rules which actually come out when one

makes a proper relativistic analysis of the situation.

If we have the case where the nuclear spin does not

change, nor the nuclear parity, and the nuclear spins are

not zero then both the Fermi and Gamow-Teller selection

rules _an apply and we can have a contribution to the beta

decay of both singlet and triplet states and the contribu-

tions must somehow be untangled. Conversely, the transitions



which do not fulfill the conditions for either the singlet

or triplet states involve the emission of a light particle

with an orbital angular momentum different from zero.

They are therefore forbidden in some degree, and it is

expected tha_ other things being equal, allowed beta decays

have larger transition probabilities than forbidden decays.

This fact c_n be used to attempt an experimental decision

between the two possibilities.

We now turn to the influence of the faGtors (2) and

(3) on the shape of the beta spectrum for allowed trans-

itions. First, we show that these two factors have no

influence on the spectrum shape as long as the Coulomb

force between the electron and the product nucleus can be

neglected. Imagine that the electron is confined within

a box of volume V. Then

r I _J 2dVe -_ I#e(O)12v N = V-_N (7.20)
V

which is an energy independent factor. We put

!
l#e (°)12 = V assuming the probability of finding the electron

in the center of the box is the same as finding it any-

where else inside the box. There is a similar argument

for the neutrino. We get then two factors V -I and so the
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V 2 in (7 .,12.) drops out :as.one would expect Since the
[ , ,.

factors: obtained from (.2) and, (3) are energy independent,

the .spectrum _sh.ape is completely determined by the stat-

istical factor..p.(E o) .it% equation (7,13) .

If we.take the Coul.omb.force on the escaping electron

in,to .accOunt, then the qtlan.ti.ty I be (o) I2 becomes energy

_.dependgn _. .We...can ge t an approximate expression for the

Coulomb correction to the spectrum shape by treating the

electron:nonrelativist_cally _ .U_ing the result of typical

non-relativistic .Coulom b wave function calculations for this,

such_as jthat igiven.by .Yost, Wheeler, and Breit, Physical

Review. 49 .17,4 (1936) we get

....I%_.I'.... (o) 2,
c ou l ,rob

(7.21)

where the parameter D = Ze2/hv- for electrons, _ = -Ze2/_v-

for v for positrons, v being::£5espeed of the beta

particle outside the Coulomb field (that is, at large

distances), and Z, the atomic number of the product nucleus

formed as a result of the beta decay. Let us consider
i -_' q _ . : _ ' _: ' 7> ,_ - ; ' '

some propertie s of the Coulomb correction factor or

Fermi fungtion P(Z,E). If v is small, then _ is large,
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and for electrons, the exponential in the denominator is

negligible, so that F becomes large compared to unity.

If instead v is large, _ is small_and expanding the ex-

ponential, F approaches unity. So for large velocities

(corresponding to high energies) of the emitted electrons,

the Coulomb force loses its effect on the spectrum shape

and the spectrum approaches that computed without the

Coulomb corrections. For positrons, the limits are the

other way around. This means that since the F is a

factor multiplying the probability of decay, the Fermi

function enhances the probability of electron emission

and decreases the probability of positron emission,

especially at low energies. For both positrons and elec-

trons at high energies the Coulomb force loses its effect

on the spectrum shape.

The behavior of the spectrum at very low electron

or positron energies can be obtained directly from

(7.13) and (7.21). For no coulomb force, the distribution

2

in momentum is proportional to _ For electron emission

with low momentum p the Coulomb correction factor F(Z,E)

becomes inversely proportional to the electron momentum.

Hence the electron distribution in momentum is proportional
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2
to p rather than to p for energies low enough so that

2n_ >> i. For positron emission, F(Z,E) becomes propor-

-I
tional to p exp(-c/p) where c is a constant. Hence the

distribution-in-momentum of low energy positrons is

proportional to p exp(-e/p) and so drops to zero very

rapidly. These results are depicted schematically in

figure 7.5.

Sometimes one prefers to look at the distribution-

in-energy rather than the distribution-in-momentum.

Since

2
c pdp = EdE, (7.22)

the former distribution is obtained from the latter by

multiplication by E/pc_ In particular, at energies close

2
to _e rest energy m c the energy spectrum for no

e

Coulomb field is proportional to p. If the Coulomb

field is taken into account, the energy spectrum at low

energies approaches a constant finite value for electrons

and it is proportional to exp(-c/p) for positrons.

(figure 7.6)

The Coulomb effect can be understood qualitatively

in the following way: the energy distribution for positive
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and negative electrons is the same at the moment of

leaving the nucleus. The Coulomb field accelerates the

positive electrons and decelerates the negatrons. Hence

the positron spectrum has fewer slow particles and the

negatron spectrum has more than they would have in

absence of the Coulomb effect.

Better results require a proper relativistic calcula-

tion of F(Z,E) and still more accuracy requires allowance

for the screening of the field of the residual nucleus

3
by the atomic electrons,

Kurie plots of [P(p)/F(Z,E)p2] ½ versus E, where F

here has the proper relativistic form plus shielding

corrections are used widely by experimentalists both to

determine end points E and to test whether a measured beta
o

ray spectrum has the allowed shape (i.e. wnether the

experimental points fall on a straight line).

Qrbital Electron Capture

Since the nucleus of any atom, radioactive or not,

is always surrounded by orbital electrons under labora-

tory conditions, a nucleus unstable against positron

decay can instead capture one of its orbital electrons.



In general, the probability of orbital electron capture

depends not only on the properties of the nucleus, but

also on the properties of the electron cloud surrounding

the nucleus, and so the same nuclear transformation

occurs with different decay probabilities if the nucleus

is surrounded by somewhat different electron clouds (for

example by being part of different molecules).

We can take over some of the statistical considerations

for orbital electron capture which were used above. The

statistical factor is different now, though, since the

electron is in a quite definite quantum state before its

capture, and the phase space volume is therefore determined

entirely by the energy of the emitted neutrino. This

volume is equal to

(2_) -3 2dpvd_vdV v (7 23)P_ _ p' (Ev)dE v •

As before, we get the statistical factor p (E) from

p' (E) by integrating over all the possible positions

inside the box, i.e., over dV . Since the neutrino is

always emitted in a direction opposite that of the nuclear

recoil, there is no question of angular correlation here,

and we can integrate over the angles d_v also. We have



now

V 2
P(E_)dEv = 2_ Pv dPv (7.24)

2
and since Eo + meC = Ev + EB (7.25)

where EB is the binding energy of the captured electron,

dE o = dE v (7.26)

2

and E = (E + m c - E B) (7.27)o e

If we take the rest mass of the neutrino to be zero

as before,

2

c pvdpv = E dE = E dE (7.28)v v v o

and

V 1

(E)dE - -- E dE (7.29)o 2_ 3 c 2 P_ _ o

2
E

V v

2_2_ 3 c3 dEo (7.30)

V 2 2

p(E ) = 2_2_3c 3 (F'o+meC -E B) (7.31)

Again we shall assume that the decay probability is

given by the four factors previously discussed. Factor

q



(i) is given by (7.31) for electron capture, and for

simplicity we restrict ourselves here to allowed electron

capture transitions. Then the probability of finding

the neutrino inside the nuclear volume [our factor (3)i

is equal to VN/V as before, but the probability of

finding the electron inside the nuclear volume [factor (2)3

is completely different, no longer proportional to i/V.

The electron before capture is bound to the nucleus,

hence the probability of finding it inside the nuclear

volume is independent of the size of the box in which

the system is imagined to be enclosed. The probability

depends on the electron state: it is small for electrons

in outlying orbits, and comparatively large for electrons

in the inner shells of the atomic structure. By far

the largest proportion of the total electron capture is

due to the capture of electrons from the innermost shell

in the atom, the K shell. If we neglect relativistic

corrections, the probability of finding the K electron

inside the nuclear volume is the ratio of this volume,

V N, to the volume enclosed by the first Bohr orbit:

2dVe I  Zme2 3\ (7.32)
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This probability must be multiplied by two because ti_ere

are two electrons in the K shell, both of which are

equally likely to be captured by the nucleus.

We choose to write the K capture probability in

the form

In 2

capture probability = tK = Cf K (7.33)

where tK is the half-life of the radioactive nucleus if

K capture is the only mechanism by which it can disin-

tegrate, i.e., if the energy E liberated by the nuclear
o

transition lies between the limits

2
- (mc2-EB) < Eo < mc (7.34)

and this factor f will be defined so that tne constant C
K

is the same as it would be for the electron emission case,

C = V_2
4_4_6c3 (7.35)

The K shell binding energy is

(7.36)

in the nonrelativistic approximation. We find then that
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me

fK c n cleus e "P (Ev)I_el2dv nJ_cleusi_I2dV_ (7 37)

4n4_6c 3

VN2
2 e¢__c2> VN22 V [Eo+I__ <_2"!2V 2n2_3c 3 J

_(7.38)

__2 3 _ 2 2

: L .o+ - (7.39)

2

where the energies E and E are measured in units m c .
o B e

Since the spin directions of electron and neutrino are

not observed in practice, the phase space factor must

be multiplied by the statistical weights of the final

states. This statistical weight is 2 for electron cap-

ture (emission of one particle of spin ½), but 4 for ordin-

ary beta decay because both an electron and a neutrino

are emitted and because of %his difference in the stat-

istical weights, we choose to homogenize the definitions

of the small fK's for the two cases, capture and emission,

by dividing (7.39) by 2 to give

Ze 2 3 1 &Ze2h2_2
(7.40)

It should be emphasized that the Z used in these equations

is the Z which interacts with the electron and so the Z



for electron capture is different from that for the emission

case because for capture, the interaction is with the

parent rather than the product nucleus.

To find a better value for fK ' corrections for

relativistic effects and for nuclear shielding by the

4
atomic electrons must be taken into account .

Half-Lives of Beta Emitters

What we have found before can be expressed by

P(p) = CF(Z,E)p2 (E -E) 2dp
o

(7.41)

which gives the momentum spectrum of the beta-particles

in allowed transitions. We may obtain the total proba-

bility per unit time that a beta-active nucleus will

decay by integrating P(p)dp over all electron momenta in

the beta spectrum. This probability also defines the

half-life t_ for the decay:

9- decay probability - Int_2 - Cf_(Z_Eo} (7.42)

where

(z,_o) --°PJo° F(z,_)p2(Eo__)2 dp (7 43)f_
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2 ½
= - I) , the maximum momentum in the spectrum,with Po (Eo

in units of mc. For arbitrary Z, the integral must be

evaluated numerically, but for Z=0, an explicit evaluation

is possible. (This amounts to making the crude approxi-

mc;L_.LU[l _.IJ.d.I. _[1_ %.,UU,A.U/LL,J,J .LILL_.L. Ci._._I..I. kJLZ _.._A _._ .LL%._'_,,J._,+",,,L,,_--''..++O /

The result is

f-(0,E ) = i___ (E 2_ 1)% (2E 4-9E 2-8)+iEoln [Eo+(E 2_ 1)%]
o 60 o o o o

(7.44)

If E is very large, f_ is proportional to E 5.
o o

But in

the energy region of interest 1 1 _ E _ i0, the depend-
' • O

ence on E is less strong and more complicated. It turns
o

out however that this E 5
' ' 0 (strong dependence of the life-

time on the endpoint energy)feature remains if one con-

siders more complicated expressions with Z _ 0, which is

necessary, since in most cases the Coulomb effects on the

lifetime cannot be ignored•

For positron decay, the story is similar, and we write

8+ decay probability -
in 2

= Cf+(Z,E o) (7.45)
t+

where f+ is the same integral as in (7•43), except that
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the Coulomb correction factor is the one appropriate to

positron emission (_ = -Ze2/_v). It is found that f+

5
has a similar E dependence for large end point energies.

o

But whenever positron emission is energetically possible,

K capture also occurs and shortens the half-life, so the

observed half life of a positron emitter is not equal to

the t÷ in (7.45).

The factors f_, f+, and fK depend on the conditions

outside the nucleus since they are determined by phase

space considerations and by the effect of the Coulomb

field on the electron. Hence the strictly nuclear

properties are folded into the coefficient C which has the

dimensions of an inverse time. It is useful to define

the "comparative half-life" of a simple beta-transition,

ft, by

If-(Z,Eo)t (for 8- decay)

ft -= I [f+(Z,Eo)+fK(Z,Eo)]t (for 8 + decay) (7.46)

K(Z,Eo)t (for K capture without 8 + decay)

where t is the half-life of the transition measured in



seconds. (Recall that the positron emitted in positron

decay will eventually be annihilated with a negatron with

the liberation of 2m c
e

2
of energy in the form of photons;

therefore the beta decay end point must be at least

1 02 MeV or 2m c2 before positron _mi_o_ __ __]_
e

otherwise the only possible transition w_uld be K capture

alone.) The quantity ft is then what we call the compar-

ative half-life, and if we have an allowed spectrum shape

then we have the basic relation

in 2
ft- C (7.47)

What is the observed frequency distribution for compara-

tive half-lives? A crude representation is shown in

Figure 7. We see that there seems to be a definite group-

ing of decays around 3.5, then many cases around log ft=5,

and another, poorly defined, rise around 6 or 7, after

which the curve drops rapidly. The small number of decays

for large values of ft corresponds to the fact that these

decays are highly forbidden, usually involving large spin

changes, and that there are not many cases available for

measurement in nature. This is because nature seems to

make unusual amounts of energy available for the decay
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in such cases, enough energy so that the beta decay goes

through an excited state involving a smaller spin, and

most of the observed transitions in the complex decay

are then associated with the second (smaller spin change)

branch. The cluster around 3.5 corresponds to what are

called superallowed transitions, the weak grouping around

5 and 6, to allowed transitions, and the weak grouping

around 6 or 7 to _, to first forbidden transitions.

/ !

These superallowed transitions are just allowed

transitions for which the nuclear matrix element [(4) in

the previous list of factors] is particularly large

Most are in very light nuclei where the nuclear states

have a particularly simple structure. Clearly the super-

allowed transitions obey the same selection rules as we

found for the allowed transitions, (7.18) and (7.19),

summarized as

(Allowed) AJ = 0, + I; No (7.48)

P

When one does the proper relativistic calculations, the

rule (7.48) survives, but we can no .....i___ distinguish

Fermi and Gamow-Teller selection rules.

What, now, can we say about selection rules for the
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forbidden transitions? First forbidden transitions pre-

sumably involve the emission of the electron-neutrino

combination with one unit of orbital angular momentum, not

zero units as we had for allowed transitions. The spins

of the electron-neutrino combination can combine to give

0 or ! i, and so the total angular momentum change for

first forbidden transitions can be 0, !I, or _2 units of

_. What about the relative parities of initial and final

nuclei? Since one unit of orbital angular momentum is

carried away, we say there must be a parity change. So

the selection rules are

(first forbidden) _J = 0,!i, !2; Yes. (7.49)

For second forbidden transitions, the orbital angular

momentum carried away by the light particles is two units

of _, and so the total angular momentum change can be

Zl, Z2, Z3, and since an orbital angular momentum of two

is associated with positive parity, the selection rules

are

(second forbidden) Aj = +I, +2, +-3; No. (7.50)
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forbidden :

with ft _ 6.

one can extend this treatment in the obvious way.

In the early stages of development of the subject,

it was thought that the value ft for a transition was a

good indication of the degree of forbiddenness, but as data

accumulated, it became apparent that the ft value was

not an entirely reliable guide. One can make the general-

ization, however, that if the transition is, for example,

first forbidden, ft must be 6 at very least, but it is

not true that an ft value 6 or larger makes the transition

there are some cases of allowed transitions

This spread is linked to the vagaries of

the individual nuclear matrix elements which connect

initial and final nuclear states. In general, the more

complicated the matrix element, the smaller one would

expect the overlap integral connecting the initial and

final states of the nucleus to be. Still, it is sometimes

useful to utilize the crude classification of degrees of

forbiddenness according to ft values in dealing with

excited nuclear states in nuclear astrophysical applications.

We give the approximate values as
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Superallowed

Allowed

First forbidden

Second forbidden

ft ,_ 3.5

_, 5-6

6-7

8-12

Table 1

The Nuclear Matrix Element

A thorough treatment of the nuclear matrix element

would require a discussion of the Dirac equation to an

extent unwarranted here. We content ourselves with

noting some of the forms that the expressions take. The

probability per unit time for the beta transition can be

written as

P =  lHifl (E) (7.51)

where H_ is the matrix element of the interaction re-
if

sponsible for the transition, and p(E) density of final

states, the number of final states of the "emitted

particle" per unit range of energy. The formalism of

the theory of beta decay was originally written down by

Fermi, in complete analogy to the Dirac theory of the

emission of light; a photon in Dirac's theory is the

electron-neutrino system in Fermi's theory.

A quantity conserved in beta decay which we have not

mentioned previously is lepton number. Both electrons and
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neutrinos are classified as leptons, or light particles.

If we create a negative electron (lepton number +i), we

create an antineutrino (-i) to accompany it so the lepton

number does not change in the transition. Similarly, if

we emit a positron (-i), we also emit a neutrino (+i)

and again the lepton number on both sides of the trans-

formation equation is the same. So we are thinking then

of emitting this combination with a total lepton number

zero as analogous to the emission of a photon in atomic

physics.

In the case of photon emission we have an interaction

or perturbation Hamiltonian matrix element

6
! !

Hif = J _f*H _idT = J'_f*(electric moment) _idT (7.52)

where the H' is the perturbing term in the total Hamilt-

onian for the system. For light photon emission, the total

Hamiltonian consists of the energy of the electrons which

form the initial and final states of this system, plus the

energy of the free electromagnetic field, and the inter-

action energy between the field and electrons, H'.

Because the interaction energy is small, perturbation
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methods of quantum mechanics are especially appropriate.

This is even more true in the case of the weak interaction

governing beta decay because the weak interaction is only

-20
about i0 times as strong as the electromagnetic inter-

action.

We might ascribe many different properties to the

interaction operator, but whatever else it does, it surely

must change the charge of the nucleon involved in the

decay process, that is, converting a neutron into a pro-

ton or vice-versa. Let us denote the charge exchange

operator by Q. In Fermi's original form of the theory,

this charge exchange was the main effect of the perturba-

tion so that

Hlf = _g(_f*Q_i ) (_e*_v)h dT (7.53)

where the subscript h indicates _e* and _v are to be

evaluated at the position of the heavy particle involved in

the process, and g represents the strength of the coupling

giving rise to the emission and is a universal constant.

The integral is essentially the matrix element of Q be-

tween initial and final nuclear states multiplied by a

term denoting the probability amplitudes of having the
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electron and neutrino at the position of the nucleon

which undergoes the charge exchange. We can also write

iHif I2 2' = g ]_(_f*Q@i ) (@e*_)hdT! 2 (7.54)

We previously made the assumption that _e and _ varied

slowly in the region where _i and _f are nonzero, so we

could say

iHifl2 2 2 2 2= g lYe(°)ll  (o)l (7.55)

The last two factors are the same ones separated out

before. The transition probability is then given by Fermi's

Golden Rule as

p 21_g2 2 I_(o) J2 i_i2 _(E) (7.56)

where M = ]_f*Q#idT (7.57)

This is the form first written down by Fermi, but one

correctly anticipates that other operators than Q may be

used and still get 8 decay, and a full investigation of

theory must consider these. In fact when one considers

nonconservation of parity in weak interactions, and the

most general form of the neutrino wave function, whicn is



- 248 -

of 4-component form, one finds 20 different versions of

this interaction. But if one takes the neutrino to be a

particle which exhibits polarization so that its spin

always lies along its direction of motion, this gives the

neutrino a 2 component form and the 20 different iDt:egr_l

expressions reduce to i0. One can relate the i0 in pairs

to one another so that really there are only 5 independent

cases. It is then a matter of experiment to discover which

of the five forms are possible. The five forms are called

scalar, vector, tensor, axial-vector, and pseudo-scalar, •

and for a variety of reasons the combinations which can

go together are the scalar-tensor, scalar - pseudo-scalar,

and vector - axial-vector. It has been found expez/nentally

that it is in fact the vector - axial-vector combination

which actually contributes to beta decay, and they enter

with such relative phases that one writes the interaction

as V - A, where V represents the vector and A the a_i_l-

vector interaction. There are interaction coupling constants

-49

that go with both of these and gv 1.41x10 in _'_•,_units,

and gA/g V = -1.19. Let us now write down the forms the

various interactions must take, writing the relatively
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large terms on the left and the small ones on the right.

Scalar:

Vector:

Tensor:

Axial

Vector:

Large

S = (_f*BQ_i) (_e*_)

V = (_f*Q_i) (_e*_)

T = (_f*8_Q_i) (_e*8_)

A = (_f*_Q_i) (_e*_)

Pseudo

Scalar: P = 0

Small

+0 (7.58)

-(_f*_ Q_i)(_e*_v) (7.59)

+(_f*__Q_i ) (_e*8_) (7.60)

- (_f*y5Q_i) (_e*Y5_v) (7.61)

+ (_fSy5Q_i) (_e*SY5_,,) (7.62)

With the notation that is standard for Dirac operators,

8 is a "mass" operator (represents _l-v2/c 2)

is a "spin" operator (the Pauli matrices)

is a "velocity" operator (represents v/c

75 = i_i_2_3

This list represents an exhaustive set of the basic inter"

actions which are possible within the full Dirac electron

theory to bring about the transformation of beta decay.

The "small" terms are those which involve the velocity of

the nucleon, which is small in relativistic units for a

nucleon bound in the nucleus. Hence for a first approxi-

(7.63)
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mation we could consider only the large terms, except

of course for P, which has no large term. Also since v_' <<]

for the nucleons, the operator 8 _ 1 in S and T. Besides

S, V, T, A, and P separately, any linear combination of

them is permissible, and the general expression for the

perturbation energy operator is

H' = C (gs S÷gvV+gTT+gAA+gpP) (7.64)

where C is the generalized Fermi coupling constant. For

connection with the previous work following Fermi we

presented, note that the large term in the vector inter-

action is just the term Fermi got with only a charge

exchange operator. And since experimentally it turns out

that the linear combination

H = gvv + gAA (7.6s)

describes nature, we see that the term Fermi wrote down

survives.

The beta decay transition interests the astrophysicist

for several reasons. We are of course, interested in

certain fundamental beta decays like that which occurs in

the proton-proton chain without which we could have no



thermonuclear reactions at all, assuming that only hydrogen

was present in the universe. And our ability to calculate

what goes on in a proton-proton reaction is based strictly

on our understanding of this weak interaction theory.

Direct laboratory observation _ *_ _*_-_*_ _h_

reaction is impractical because of its slowness; so we

need to have especial confidence in our ability to make

calculations for this primary stellar generating reaction.

Secondly, many of the reactions which occur in more

advanced stages of stellar evolution involve beta decays,

many of which are familiar from laboratory experience.

But if multiple neutron capture occurs extremely rapidly

so that all the product nuclei lie well away from the

valley of beta stability then we usually are again faced

with the problem of having beta-decay rates that are not

measured in the laboratory, and which must therefore be

calculated if we are to have any information at all. A

typical situation in such rapid neutron capture problems

is that we have a daughter nucleus with many excited states

and the ground state of a nucleus that could be formed by

neutron capture _ing above the excited states cf the <ia_hzer _ieus

sum the decays from the ground state or ground and first
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few excited states of this nucleus to all the energy

accessible states of the daughter nucleus (fig. 7.8).

This summing raises the question as to whether there may

be some beta decay sum rules that enter to diminish the

value of the nuclear matrix element for these transitions

to the more highly excited nuclear states. One can make

arguments similar to those we made for captured gamma

rays where we had to reduce the size of the nuclear matrix

element for the photon transitions involving highly ex-

cited states. A similar reduction ought to be possible in

the case of beta decays to highly excited states; but in

the case of beta decay, in general, one does not deal

with direct overlap-type integrals, but instead integrals

involving wave functions that have been operated on zn

various ways. The operations may well perturb the overlap

of the functions, for instance, by changing their phase.

This means that our present situation is not really equiva-

lent to gamma decay between low lying states, where we can

have a great purity of a single particle type transition.

In the case of beta decay, the only thing that is at all

equivalent to a single particle transition are those

classed as superallowed; everything else tends to cut down
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the size of the matrix element.

Another situation involving beta decay which is of

astrophysical interest is in matter at extremely high

densities. The Fermi level of the electrons becomes very

large, and we must consider what sort of electron capture

rates are induced in the nuclei, which are continually

bombarded with electrons having energies all the way up

to the Fermi level, often many MeV. At the same time

under such circumstances, we are dealing with a highly

degenerate electron gas, and the electrons are already

occupying all the lower cells in phase space. Jonsequently

nuclei which ordinarily emit electrons in beta decay may

have no phase space available into which they can emit

their decay electrons, and so will not be able to decay

in the ordinary way . If we tamper with the occupancy of

phase space, the f functions entering into the comparative

half-life are modified, and so on. These specialized

applications will be encountered later.
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Part B. STELLARPHYSICS

8. Introduction

Astrophysics, as you can gather from the title, primarily

means the physics of the stars. The meaning of the term has

been broadened a great deal in recent years. It has been

applied to the physics of the planets, of the sun, and of

interplanetary medium =_ well.

The first development in astrophysics consisted of looking

at the spectra of the stars that were_photographed, and of

trying to deduce from these the conditions at the surfaces

of the stars. When a gas is heated to a high temperature, it

will emit light of certain characteristic wavelengths. However,

if you shine black body radiation corresponding to a temperature

that is higher than the gas through the gas then, instead of

seeing bright emission lines you will see dark lines due to the

absorption of characteristic wave-lengths by the gas. In the

case of stars it is found that the outer layers have a temper-

ature gradient that decreases as we go outwards, so that the

gas at the very edge is generally cooler than the gas which is

emitting the light. The usual effect is then a spectrum which

contains dark absorption lines. By looking at these, determi-

ning which elements produce them, and seeing how much the

elements are excited, one finds that certain of the lines arise

from absorption by atoms in excited states. From statistical

mechanics it is known that the populations of atoms in excited

states depend upon the usual Boltzmann factor. Thus the relative
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numbers of lines that arise from absorption in various excited

states of an atom can be determined. From these considerations

the composition, temperature, density and pressure in the outer

layers can to some extent be determined. The density is some-

what less sensitively determined than the temperature, but

nevertheless the relative abundances of ionized and neutral

forms of certain elements depend at a given temperature on the

density.

One of the first things done that could be called astro-

physics then was to make use of empirical classifications of

stellar spectra to determine what these meant in terms of tem-

perature. On this basis were obtained the traditional spectral

classes of the stars. These are arranged according to the surface

temperatures of the stars. These temperatures may vary from

slightly less than 2000°K to more than 500,000°K. The spectra

of most stars (and hence the composition at the surface) can be

arranged in the following continuous sequence. (Each class is

further subdivided in ten subclasses labeled 0 through 9, e.g.

Class 0:

A0. )

Class B:

Temperatures of 25,000 °K up.

helium.

25,000 - ll,000°K.

Lines of ionized

The lines of hydrogen and

neutral helium are conspicuous at B0. Ionized

oxygen and ionized carbon become strong at B3.



Class A:

Class F:

Class G:

Class K:

Class M:
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Neutral helium is strongest at B5. Hydrogen

lines become progressively stronger in the

higher numbered subdivisions of the class.

At A0 hydrogen and ionized magnesium lines are

strongest, while the helium and ionized oxygen

lines have disappeared. Hydrogen lines weaken

in the higher subdivisions, while ionized metals

(Fe, Ti, Ca) strengthen. 10,700 - 7500°K.

Class F0 is rich in lines of the ionized metals,

the strongest being the H and K lines of singly

ionized Ca. Metallic lines strengthen and

hydrogen lines weaken as we pass through this

class. 7500 - 6000°K.

In this class the lines of the neutral metals

become strong while the hydrogen lines continue

to weaken. Molecular bands of CN and CH appear.

6000 - 4910°K. Our sun is class G2.

In general molecular bands and lines of neutral

metals become much stronger while the lines of

hydrogen and ionized metals continue to weaken.

At K5 the lines of Ti0 are weakly visible.

4910 - 3500°K.

The characteristic feature is the complex spectrum

of molecular oxide bands, of which the Ti0 bands
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are strongest. 3500 - 2200°K.

Some stars do not fit into this sequence of spectral

classes. Therefore some additional spectral classes have

been established which parallel the above classes in tem-

perature. These classes include the following:

Class S: A low temperature class parallel to Class M.

This is still characterized by molecular oxide

bands but the most prominent feature is the Zr0

bands. Certain elements such as Zr, Y, Ba, La

and Sr give strong atomic lines and oxide bands.

Lines of neutral technetium are usually seen.

Classes R and N (or Class C): Parallel in temperature

to the ordinary classes K and M. The spectrum

is characterized not by oxide but by molecular

carbide bands, such as those of CN, C2, and CH.

Class W: Extremely high temperature objects called Wolf-

Rayet stars with bright, broad, hazy emission

lines of ionized helium and highly ionized carbon,

oxygen, and nitrogen. Two sequences exist the

WC stars have strong carbon lines and weak

nitrogen lines; in the WN class the reverse is

true. These stars are generally found to be

ejecting gas rapidly into space.

One of the main things we will be concerned with is the under-

standing of how the relative abundances of the various elements
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came to be what they are. As noted above, some of the stars

have an abnormal composition due to nuclear reactions occur-

ring in their interior, and in fact, it was these abnormal

compositions that gave some of the initial clues as to the

kind of thermonuclear reactions that are taking place in stel-

lar interiors. From this, we are able to go on to deduce many

things about the general formation of the elements.

As an example, consider the peculiar spectra of the R

and N class stars. Normally, the oxygen abundance in a star

is greater than the carbon abundance, so that in statistical

equilibrium the molecule with the highest binding energ_ that

is carbon monoxide, will be formed and there will be oxygen

left over to form oxide compounds which give prominent features

of the spectrum. In the R and N stars it appears that carbon

predominates over oxygen and when the oxygen is used up in

forming carbon monoxide, the residual carbon combines to form

C2, CN, etc. Thus, some factors in the evolutionary life of

R and N stars must give rise to an overabundance of carbon

relative to oxygen.

In summary then, the astrophysicist takes spectra, examines

the relative intensities of the lines, deduces from this the

temperature and density in the photospheric surface layers of

the stars, and hence, if he knows from some other means also

the total luminosity of the star, then he can deduce the radius
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from the usual Planck emission law for radiation. From a
/

knowledge of the conditions at the surfaces of stars, one can

go on to formulate a picture of the interiors.

It was apparent long ago that the stars are composed

entirely of gas. Therefore if the star is a structure which

is in hydrostatic equilibrium we know that at every point in

the interior the pressure must be sufficient to hold up the

weight of the overlying layers. We therefore have essentially

four things -- pressure, temperature, density and composition

that we can vary. The pressure, temperature, and density are

related by a gas law, but one still has a certain degree of

freedom in specifying what the actual structure of the star

will be. For example, if the star has a certain radius and

roughly a certain kind of structure then you can say how much

the pressure has to be at the center in order to hold up all

the overlying layers. Now, you do not know whether you have

obtained that pressure by having a high density and relatively

low temperature at the center, or by having a lower density

and a higher temperature at the center. Much of the more

refined aspects of the study of stellar interiors is the

determination of the combination of temperature and density

in the interior in order that we should have hydrostatic

equilibrium.

Rather early in this century, Emden developed the properties

of what were called polytropic spheres. We will talk more
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about these later, but essentially Emden's contribution was

to say there is a relation of a given kind between the pres-

sure and density in the interior of a gas sphere so as to

maintain it in hydrostatic equilibrium. Hence, the tempera-

ture distribution in the interior could be whatever is re-

quired to actually produce eh_e _!ation between pressure

and density. Starting from an assumption of that kind, in-

vestigators had an idea of just what kind of temperature and

density conditions must be obtained in the interior of a

star for hydrostatic equilibrium. These were the kinds of

conditions that had to be studied in determining a number of

other properties of the star. For example, how does a star

manage to transport energy from the interior out to the sur-

face? Emden's idea was that this transport took place by

convection. As you know, there are three ways in which we

can transport heat: convection, radiation, and conduction.

Ordinarily, the thermal conductivity in a stellar interior

is very small and conduction is not important. (We shall

find some exceptions to that rule, but this is the usual

case in ordinary stars.) The choice really lay between

whether it was convection, the actual mixing of gases which

would enable heat to be transported from one place to an-

other in the star, or whether it was radiation which would

give energy transport by a process of emitting energy at

one spot, absorbing it at a cooler spot, and re-emitting
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it, and so on, in this way gradually letting the energy fil-

ter from a hot spot to a cool spot along a temperature gra-

diant according to the laws of emission and absorption of

radiation. Emden's idea in setting up some of the theory

of polytropes was that probably the heat transport took

place by convection, and in this case there would be a spe-

cific relation between the pressure and the density every-

where. This is why the polytropic spheres were studied

very early.

Later on in the 1920's it was felt that convection was

probably not the actual means by which energy was trans-

ported, but rather it was by radiative transfer. Eddington 1

made very great contributions in working out the conditions

necessary to transport energy by radiation with small tem-

perature gradiants and by working out the opacity of the

material which absorbs the radiation. The position towards

the end of the 1920's was that one could understand the kind

of pressures, temperatures and densities that had to obtain

in the center of a star, and the conditions under which en-

ergy transport from the interior to the surface could occur.

It was thus possible to understand generally what the

structure was, what the conditions in the interior were,

and how the energy transport occurred, but it was not pos-

sible to understand where the energy came from. This was

i) A. S. Eddington, The Internal Composition of the Stars,

Cambridge, England
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the major question that faced people in the late 1920's and

early 1930's --- what was the source of energy in the stellar

interiors? Of course, this question was not then asked for

the first time, but it was the last of the major puzzles.

People had been thinking about the possible energy

sources for quite some time. If one goes back to the last

century, one encounters some pretty fantastic suggestions,

e.g. the suggestion that perhaps meteors are continually

falling into the sun and heating it, because, of course,

meteors were observed to fall into the earth's atmosphere

and when they did, they obviously became very hot. That

idea did not last very long. Helmholtz and Kelvin made

what seemed to be the best suggestion that anyone could

think of for a long time, namely, that the stars obtained

their energy strictly by gravitational contraction. How-

ever, when they calculated how long the sun could have been

shining at its present luminosity, and how long it would

have taken for it to have contracted to its present radius,

it turned out, depending upon precisely what assumption one

had to make for the interior distribution of mass and hence

the exact gravitational potential energy of the model, that

the sun could shine in that way for a few tens of millions

of years. These figures did not agree with those of the

geologists who at the same time were studying the ages of

the rocks on the surface of the earth. Without question,
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these rocks appeared to be at least a billion years old.

The way out of this dilemma appeared in the form of the

mass-energy relationship. The science of nuclear physics

had progressed to the point where it was known that the con-

version of only a small fraction of the solar mass to energy

would supply enough heat to allow the sun to shine for ex-

tremely long periods of time. The question was then how

was the mass converted? A simple process like the com-

b ning of four hydrogen atoms (with two beta decays) to form

one helium atom would, in theory, release a considerable

amount of energy. The difficulty was, however, that the

Coulomb barriers were well known and these seemed to be

high enough so as to prohibit two hydrogen nuclei from ap-

proaching near enough together in order to combine. The

Coulomb barrier heights were known to be of the order of

l0 B or 106 electron volts for the very simplest nuclei.

These energies are much higher than the thermal energies

of the particles themselves, even at temperatures of

1.0-15 million degrees, which was a rough figure for the

temperature at the center of the sun. These difficulties

were finally surmounted by Gamow and other investigators

who calculated the quantum mechanical penetration proba-

bilities for charged particles through potential b_rriers

and found that these penetration probabilities, though
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small, were still non-zero. Atkinson and Houtermans then

applied these calculations to an astrophysical problem and

calculated the rate at which the penetration of the Coulomb

barrier would occur by the bombarding of one charged parti-

cle by another in the high energy tails of the Maxwell ve-

locity distributions of those particles. Their important

contribution was to show that even though the average ther-

mal energies of the particles lay far below the top of

the Coulomb barrier, nevertheless penetration through the

barrier can take place at a very definite rate.

Once we knew in general what the essential nature of a

thermonuclear reaction had to be, the next step was to find

just what are the nuclear reactions that are responsible

for nuclear energy generation. It was evident that a four-

way collision of hydrogen atoms occurring simultaneously

with two beta decays was a rather improbable way to make

helium. In the late 1930's, Bethe, and independently,

yon Weizs_cker discovered the carbon-nitrogen cycle by

means of which hydrogen could be converted into helium.

At the same time Bethe and Critchfield found a sequence

of reactions by means of which four hydrogen atoms could

come together and be converted into helium; that is, they

found a set of nuclear reactions involving a certain se-

quence of intermediate products which would allow the
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conversion of hydrogen into helium without the use of

'catalyst nuclei' to promote this transformation. On

this basis, then, the essential nuclear reactions respon-

sible for maintaining the luminosity of most stars became

known. At the same time investigators were beginning to

study the problem of the evolution of the stars.

As an introduction to a study of stellar evolution,

we will consider some aspects of the relation between the

total energy released by a star and its surface tempera-

ture. One of the most remarkable properties of stars is

the wide range of their luminosities. The brightest stars

kno_nemit about i0 s as much energy per second as the sun;

the faintest known emit only i0 -s as much energy per second

as the sun. The logarithm of the total rate of energy emission

of a star is called its absolute bolometric magnitude. Astro-

nomical magnitudes form a logarithmic scale with a factor 2.512

between magnitude classes. Because of the limited spectral

transmission of the earth's atmosphere and the even more

limited spectral sensitivity of most recording instruments,

it is difficult to translate measurements into bolometric

magnitudes. Hence in practice there are many systems of

practical magnitudes which are based on specific spectral

ranges. These magnitudes include the visual, photographic,
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and photoelectric magnitudes in various colors. The difference

between the photographic and visual magnitudes of a star is

called its color index. This gives a measure of the surface

temperature of the star. The absolute magnitude of a star

is equal by definition to the apparent magnitude it would

have if it were placed i0 parsecs away from us. (The parsec

is a unit of astronomical distance equal to 3.258 light years.)

As an example of the above, the bolometric magnitude of the

sun is +4.63, its luminosity is 3.78 x i0 s3 erg/sec and its

effective surface temperature is 5760°K.

Certain startling relations between the effective sur-

face temperatures (or color index B-V, or spectral class)

and the absolute magnitudes of the stellar population became

immediately apparent when these two quantities were plotted

against one another for a large number of stars. Such a

plot is called a "Hertzsprung-Russell" or "H-R" diagram.

A schematic representation is shown in Figure 8.1. The area

of greatest population for the majority of stars consists

of a long diagonal slash in the diagram called the "main

sequence". Another well defined region is that labled "red

giants". These are large, luminous red stars. In the bottom

left-hand corner of the diagram is a region populated by very

small blue white stars of mass usually less than that of
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Figure 8.1 Schematic H-R Diagram

the sun called "white dwarfs". As will be shown, these

stars constitute the "stellar graveyard" in that they

represent the end of stellar evolution. These stars con-

sist of highly degenerate matter in which the density is

so high that electrons have effectively filled up all

available cells in momentum space. This results in ex-

tremely high internal pressures which in turn support the

outer layers of these very dense stars. They have no in-
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ternal energy sources so that their residual supply of

internal heat is being gradually radiated to space. That

is to say, they are cooling off with no future expectations

of an active stellar life.
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Figure 8.2

A composite color-magnitude diagram for ga-

lactic clusters. In this diagram visual magni-

tudes are plotted against the difference of the

photoelectric magnitudes measured in blue and

visual light. For comparison, the giant branch

of the globular cluster M3 is also included. The

lengths of time required for stars to evolve

away from the main sequence are shown on the

right.

A more specific example of an H-R diagram is shown in

Figure 8.2, where the star population data for several ga-
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lactic clusters (associations of bright, relatively newly

formed stars coexisting with large amounts of gas) have

been plotted in the same fashion as Figure 8.1. We note

the presence of the main sequence common to all the clus-

ters. At the same time however there are sequences of

stars originating in the main sequence which tail off

into the region of the red giants. The point of origin

of a sequence is characteristic of the cluster and in

fact is an indication of the age of the individual clus-

ter. This may be seen from the following considerations:

the luminosity of a star is a strong function of its mass.

For stars such as the sun, the luminosity varies approxi-

mately as the fourth power of the mass so that the larger

stars are releasing far more energy per unit mass than

lighter ones. We expect then that the larger the mass of

a star the more rapidly will its evolution take place. It

is also known that a star originally "born" onto the main

sequence will remain at its point of birth until the hydro-

gen in the vicinity of its center becomes transformed into

hmlium. The length of time that this process takes turns

out to be about two-thirds of its total active lifetime_

Once the core hydrogen is exhausted the star heads out into

the red giant region. If we now assume that all stars in a

given galactic cluster were formed at the same time, then
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the point on the main sequence at which the sequence bran-

ches off into the red giant region will occur at that point

for which all stars of a given age in the cluster are just

evolving off the main sequence. This age is then just the

age of the cluster. These ages are indicated on the right-

hand ordinate of Figure 8.2.

We also note in Figure 8.2 that for many of the clusters

(e.g. H+ X Persei, M41, MII) the sequence leading to the red

_iant region has a break in it. The region of the gap con-

tains variable stars, that is, stars whose magnitude varies

regularly with time.

When the star leaves the main sequence and arrives in

the red giant region it remains there until helium thermo-

nuclear reactions start to take place. At this point the

details of the evolution are not well known except that the

star moves off down into the region of the white dwarfs.

In transit, however, it is known that it must reduce its

mass below a certain value known as the "Chandrasekhar limit".

To do this, it either emits mass regularly or spectacularly

as in a nova or supernova explosion, or both.

The history of a star before its arrival on the main

sequence is that of a large cloud of gas which contracts

while releasing half its gravitational potential energy as

radiation. Recent models place this protostar in the red
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giant region where it then comes down and settles on the

main sequence. The time for such a contraction is approxi-

mately 2-3 million years. We may compare this to the main

sequence age of i0 billion years for a star like the sun.

After heading back to the red giant region its thermo-

nuclear processes continue with the subsequent building up

of small amounts of the heavy elements. Some fraction of

the stellar mass is then ejected into the interstellar

medium as the star trims down to the Chandrasekhar limit

for white dwarfs. This gas, now enriched with heavy ele-

ments, can be used for new star formation. We expect then

that the heavy element concentration in the interstellar

gas will increase. One of our tasks will be to examine the

details of stellar evolution in order to explain the com-

positions of stars with peculiar spectra, and the relative

abundances of elements as found in the solar system with

particular attention to meteorites.
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9- The Virial Theorem and Some Consequences

One of our primary objectives in dealing with stellar

interiors is to have some idea of what temperature and den-

sity combination will be involved in the calculation of

certain nuclear reaztion rates. These temperature and den-

sity conditions and other interesting consequences may be

determined by the application of the Virial Theorlem.

To prove this Theorem let us consider a self-gravi-

tating system of particles. By this we mean that the par-

ticles under consideration are so dilute that the only

forces between them are gravitational forces. Consider any

one of these particles, of mass m with coordinates (x,y,z),

subject to a force with com_onents(X,Y,Z). Applying Newton's

Third Law to this particle we can write the following re-

actions to this force_

m d2x _ X
dt s

md__ =Y
dt 2

m dSz = Z
dt s

We note the identity:

1 ds
2 dt 3

(9.1)

(mxs) = <_t x _t ) = mx da___x+ <_t ) s
dt s

(9.2)
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Therefore we can rewrite equations (9.1) as:

2 dt 2

1 d3 (myS) = <dd_tt>2 + yY
2 dt 2

1 d2_ (mz2) = d<_ _ + zZ
2 dt _

Summing these expressions we find:

1 ds

2 dt s
(mr2) = m_<_t_s + _t s + _9 ] +

(9.3)

(xx + yY + zz)

I = _ m.r. s

l i i

(9.5)

i 2

(9.6)

where I is the moment of inertia of the system and K the

kinetic energy. Therefore equation (9.4) becomes:

1 f = 2K + ._ (x_,_ i + Y_Yi + ziZi)

2 l

(9.7)

The last term in equation '(9.7) is called the virial of

Clausius.

note:

(9.4)

Now, summing over all the particles in the system, we
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In order to evaluate the virial term let us consider

now the interaction between any two of the particles, de-

noted by subscripts i and 2o Let that force exerted by

particle me on mI have components (A,B.C); thus the force

exerted by particle mI on m_ has components (-A, -B, -C).

The contrioution these forces make to the virial expression

is, then:

A(x I - x 2) + B(y I - y_) + C(z I - z_

(9.8)

Thus, for the system as a whole, the virial term is just

equal to the double summation over all pairs of expression

(9.8), i.e.:

girial = ? F A(x I - x_) + B(y i - y_) + C(z_ - z_)

Thus far, our arguments have been quite general.

Now we recall that our system is such that only the gravi-

tational forces are significant. In this case (A, B, C)

are just the components of Gm_me/r_ s directed from particle

m s to m I. Hence we have

(9.9)

(9.1o)

and similar expressions for the other components.
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The Virial is then:

Virial = 7Z /-Gm Im_ [ (x I - x_)_ + (y_- Y2)2 + (z_ - z 2)_]

\ [J

=-TZ Gm I m_

rl 2 (9.11)

Now we note that the term (Gmlm_/r1_) is just the gravi-

tational potential of the two particles m I and m_ ; in other

words it is just the work required to separate m I to infinity

from me . The double summation over all pairs of the system

of this quantity is then just the work required to separate

all the particles in the system to infinity; that is, the

gravitational potential energy. This means that, writing

as the gravitational potential energy, we obtain the

form of the virial theorem:

1 d2I = 2K +

2 dt s

(9.12)

There are more general forms in which we could write

the virial theorem. K is the thermal energy of the system,

which simply means it is the sum of the energies of the

particles in thermal motion. Now it may be that some of

the energies of particles in motion may not be truly expressi-

ble in terms of a temperature. That is to say, we might

have mass motions in the system in the form of turbulence
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or in the form of the rotation of the system as a whole.

So it is useful to recognize the possibility of splitting

the kinetic energy of the particles into mass motions and

thermal motions. Let us, then, write the Virial Theorem

more generally as:

1

2

daI = 2K + 2_ + 2K R +_+ _ - 3pV

d_

(9.13)

Here _ is the kinetic energy of mass motions or turbulence,

K, is the kinetic energy of rotation of the system, K remains

the thermal kinetic energy, and _is the energy due to any

magnetic fields contained within the system. Chandrasekhar

and Fermi first proved the form of the virial theorem which

contained the term due to the magnetic field. It is further

possible to consider that the system has a boundary on

which pressure is exerted, hence we have included a term

(-3pV), where p is the pressure exerted on the boundary

of the system having a volume V.

Now, returning to our statement of the virial theorem

in equation (9.12) we can seek the meaning of this theorem.

If the moment of inertia of the system is not changing, i.e.,

if the system is truly in equilibrium, we would have:

2K + _ = 0

(9.14)



standing the general nature of stellar evolution.

-24-

In other words, for a system of this sort in equilibrium,

we see that twice the internal thermal energy must be equal

to the gravitational potential energy, and right here we

see a very important aspect of stellar evolution. A star

can be considered as a system in which the moment of

inertia is not changing very rapidly, so that the left-

hand side of this expression is zero to a very good approxi-

mation. Hence, twice the internal thermal energy of the

star will be equal to the absolute value of the gravita-

tional potential energy. We must remember that _ is in-

trinsically a negative quantity. The star of course does

shrink during those periods in which nuclear energy

sources are not supplying the energy necessary to main-

tain it in a given position of equilibrium. Hence, as a

star shrinks, and as the magnitude of the gravitational

potential energy increases, twice the internal thermal

energy must stay equal to it or, in other words, half of

the gravitational potential energy that is released is

stored as internal thermal energy and half must be radiated

away.

Here we have perhaps our greatest clue to under-

A star
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is a sphere of gas in space that shrinks as long as there

are no nuclear reactions available in the interior to supply

the energy that is radiated into space. As long as it

continues to shrink, it releases gravitational potential

energy, of which half goes into thermal energy and half is

radiated away.

Thus far we have not specified what the particles

in the system are. The Virial Theorem, in its general form

could as well be applied to a cluster of stars which is

self-gravitating. Let us now suppose that the particles

in the system are molecules in a gas. Consider an element

of mass dm at a temperature T. Each molecule has a mean

kinetic energy of 3/2 kT. If the element contains dN

molecules, the thermal energy contained within this element

is-

dK = 3 kT dN = 3 RT dm

2 2

= 3 (Cp - cv) T dm

2 (9.15)

Here R is the gas constant, and is simply the difference

between the specific heat at constant pressure cp, and the

specific heat at constant volume c v .

of such a gas is simply:

dU = c v T dm

Now the internal energy

(9.16)
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Writing, as is customary, Y = Cp/Cv, equation (9.15)

for the thermal energy in an element dm becomes:

3 <-_v i> c' Tdm "- 3 (7-I) dU

thus, fer the entire system we can write:

K = 3 (y-l) U
2

The Virial Theorem then becomes:

i it/ 3 (y-z)u 4 n
2 dt s =

Now, letting E = U • n be the total energy of the system,

for the equilibrium case we have

3(y-l)U • n = 0

E = -(37-4) U

(9.17)

(9.18)

From equations (9.21) we find:

(9.22)

We are now in a position to note several important

consequences of the Virial Theorem. Consider first an ideal

(9.21)

gas for which Y = 5/3.

u =-! _
2

(9.2o)

(9.19)
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Thus for a star which can be considered as a perfect gas

in equilibrium, half of the gravitational potential released

in contraction is stored as internal energy and half is

radiated away.

Now, let us consider the case for radiation or

extremely degenerate relativistic matter, for which

¥ = 4/3. For such a gas we find:

E=0

U=-_

(9.23)

This corresponds to a sort of a transition region. The

fact that the total energy of the system is zero implies

that we could expand or contract the system at will with-

out change of energy. Therefore this value of y re_resents

the threshhold of instability in a system. Now it so

happens that astrophysical systems can undergo phase changes

in which the compression of a gas does not lead to a temper-

ature rise because the gas is absorbing energy and converting

matter from one form into another. Ionizing hydrogen in

the gas would be one such form of phase change. Under

such circumstances, y falls less than 4/3 and such systems

become unstable against gravitational collapse.
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We now wish to form an approximate idea of conditions

in stellar interiors. Let us apply the Virial Theorem to
by dense

a uniform/sphere of gas at a temperature T. Although this

does not constitute a system in hydrostatic equilibrium

we will treat it as such to obtain results which are

at least of the right order of magnitude.

we have

In this case

sphere is given by:

= -3 GMa
5 r

(9.25)

We assume a mean molecular weight per particle U, in amu.

For example, in the case of ionized hydrogen we have two

particles (a proton and an electron) for every unit of

atomic mass; hence we would have U = 1/2. The number of

molecules is, then, equal to MNo/u where N o is Avogadro's

number.

Thus for the internal energy we have

u-- 3_kT
2 U

(9.26)

7 = 5/3 and:

2U + _ = 0

(9.24)

Now, the gravitational potential energy for a uniform
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Thus from equation (9.24) relating U and _ we have:

T = GMu

5RkNo

Now, for the uniform gas sphere we have

4

M = 3 nPR_

Equation (9.27) then becomes

T = (4np)1/3 GM2/3 u

5 (31/3) kN o

= (4.1 x 106)M2/3pl/3 u OK

Here M is in solar mass units, and p is gm/cm 3.

Now let us see just how good our result is.

that a temperature of approximately 15 x i0 s OK

(9.27)

(9.28)

(9.29)

to convert hydrogen to helium in the sun. With M = i, and

assuming U _ 2/3 we find that this would require a density

P _ 165 gm/cm 3. This agrees with the results one_find_ for

the sun's density from more precise models to within a factor

of two.

We note one further important conclusion that can be

drawn from this relation. It is,thls: as a star contracts

T

or expands the factor 1/3 remains constant.
uP

We will find

is required
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Thus far we have cgnsidered the consequences of the

virial theorem under conditions in which the dimensions

of the system are not changing. Let us now consider a

body which is nearly in equilibrium and ask under what

conditions it can become unstable against gravitational

equilibrium, and thus suffer a gravitational collapse.

This problem is of particular interest in considerations

of the formation of galaxies out of clouds of gas in

intergalactic space and of the formation of stars from

interstellar gas.

If we begin with a gas cloud in equilibrium we know

that the second derivative of the moment of inertia with

respect to time is zero. If we wish the

to

cloud/become unstable against gravitational collapse, then

the second time derivative must become negative, forcing

the first derivative to become negative. Thus the con-

dition that a gas cloud will become unstable against

gravitational collapse is:

d s I
-- < 0
dts

(9.30)

If we consider a gas for which y = 5/3 we then have that

twice the internal energy must be less than the absolute
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value of the gravitational _otential energyj i.e.

2u </_1

(9.31)

for the case of a spherical gas cloud this becomes:

5RN o

Finally:

(9.32)

M > 5R_R_NkT = ,[S_ _ N_kT

GU _gu GU

> s[3_]¥"mkT
u4_ G_p1-_

M > 1.2 x I0 -l° Ta_

(.33)

NOW let us consider the conditions that might be typical

of the gas in intergalactic space or in a dense interstellar

cloud and ask what this relation implies.

We will assume for the intergalactic medium that

U = 12 T = 104 OK and p = i0 -ss gm/cm 3. Here we ass.line

that the temperature is at least high enough to ionize

hydrogen. The value of the density is an approximate

smoothed out density of all the matter in the universe.

Under these conditions we find that instability against

gZavitational contraction implies:

M > 1.2 x 101°

M®
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This is an interesting result in that observational evidence

places the ranges of galactic mass between 109 and 1071

solar masses, although extreme cases do exist of 1018

solar masses. This result leads us to believe that perhaps

the galaxies are themselves products of a gravitational

instability in an intergalactic medium possessing a_proxi-

mately these general characteristics.

Now that we have established order of magnitude

estimates of the mass of galaxies, let us consider their

development in more detail, following the method of Hoyle

(1953). His theory is outlined briefly below.

The key to Hoyle's galactic evolutionary theory lies

in the thermal properties of hydrogen gas. Let us consider

_27

a hydrogen gas cloud with an initial density P0 = i0

gm./cm, s. To estimate the temperature of the gas, we

must realize that most cosmic objects have very large

Reynold's numbers and hence the gas is likely to be

turbulent, i.e. to develop mass motions. The energy of

the mass motions becomes converted into heat. Hoyle

estimates that certainly more than l0 Is ergs/gm, and

possibly more than i014 ergs/gm, is made available in this

way.
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The thermal energy of atomic hydrogen is _ RT per
2

gram, where R is the gas constant and T is the temperature

(OK). Hence somewhat more than i0 la ergs/gm, is required

to heat hydrogen from O°K to 10,000°K. At this point
and

ionization of the hydrogen sets in,/ more than 1013 ergs/gm.

is required to ionize hydrogen.

Hydrogen gas can radiate energy in three ways: (i),

line emission, which will be neglected, (2), free-free

transitions, in which unbound electrons make transitions

between two states of the continuum, and (3), free-bound

transitions, in which electrons are captured from a state

of the continuum into a bound state of the hydrogen atom.

The rate of hydrogen radiation from the latter two

processes is

1"45 x 10-aT T_2 [i+ 3"85 x i0"] N_ ergs/cm3sec''T

where N is the number of hydrogen atoms per cm. s and T is

the kinetic temperature in °K. This formula holds well

only for T >25,000 °K. We see that the rate of radiation

decreases until very largetemperatures are reached.

From these properties of hydrogen gas we can see

that the large mass of hydrogen gas with which we have to

deal is likely to have a temperature of either close to
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I0,000 OK or greater than 105 OK. The reason for these

two temperature calsses is that the time of development

of a galaxy is of the order to 1017 seconds, and in this

time hydrogen initially at temperatures <105 OK can cool

by radiation until most of the hydrogen atoms have re-

combined with electrons.

Let us reconsider the case of a gas cloud at a

temperature of 10,000°K. The necessary condition for a

gas cloud of uniform composition to be in thermal equilibrium,

in the case where radiation pressure is negligible so that

gravitational forces are balanced by gradients in the gas

pressure, is that the total gravitational potential energy

(taken as positive) must be equal to twice the thermal

energy of the gas. If _ is greater than this then a

spherical could will contract.

This inequality gives a lower limit to the mass

of a gas of neutral hydrogen which can condense. For

i0
M = p V = I0-27V, M > i0 solar masses is the minimum

o

mass of hydrogen gas which can condense. During such

condensation the thermal energy is quickly radiated away

and the temperature remains at i0,000 OK. Hence the

contraction of the gas takes place under isothermal con-

ditions.
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The thermal energy released in a uniform isothermal

contraction from a volume V to a volume V' is

MRT ln(v_,

(9.34)

the order of

(9.35)

Now if the initial mass of the hydrogen gas cloud is

large compared to the minimum, then it follows that (9.35)

is large compared to (9.34), regardless of the value of

V'. Hence in the contraction of such a cloud only a

small part of the gravitational potential energy is

converted into thermal energy, and the rest must go into

mass motions which will be adequate to expand the cloud

back to nearly its original dimensions. Such a cloud

therefore cannot undergo appreciable contraction.

However, such a cloud is also unstable to the fragmentation

into subcondensations which have about the minimum mass

consistent with (9.33). We may identify such a frag-

mentation process with the formation of a cluster of

The gravitation energy released by the contraction is of
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galaxies, the subcondensations having a mass _ 10I°

solar masses as noted above. These are about the masses

of elliptical galaxies.

Let us now consider the condensation of a galaxy

of this minimum mass. Expressions (9.34) and (9.35)

remain comparable for V' = 0.1V; the former is still 30

percent of the latter for V' = 10-SV, and it has fallen

to 5 percent of the latter V' = 10-6V. Hence there can

be an almost complete dissipation of the energy of

contraction for a decrease of linear dimensions of a

factor 2 or 3, but further contraction is then prevented

by the development of mass motions. However, after a

contraction of linear dimensions by about a factor of 3,

the galaxy is then unstable to a fragmentation into

further subcondensations. These in turn can contract

in linear dimensions by about a factor of 3, followed by

further fragmentation, and so on. As the density of the

subcondensations increases, the rates of contraction and

radiation also increase. If a subcondensation contracts

by a factor of k_ , and then divides into k equal masses

having a radius equal to I/M of that of the original

subcondensation, and if many such stages of condensation
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take place, then Hoyle points out that the time for

all stages of condensation is, in units of that required

for the first stage,

1 + 1 + 1 + 1 + ... = k
k k2 k3 k- 1

For k_ _ 3, k_5, and the time required for an infinity

of steps is only 25 per cent longer than that required

for the first step. Hoyle postulates that the condensa-

tion of the first step will take a time of the order of

1017 seconds, and since the fragmentation will really be

a continuous process, very small subunits will be formed

over the whole of this time scale.

The process of fragmentation will stop when the

density of the subunits has become so large that they are

opaque to their own radiation. Hoyle shows that such

final subunits have masses which generally should lie in

the range 0.3 to 1.5 solar masses, with some dispersion

which will extend outside this mass range. After a

galaxy has been fragmented into a hierarchical structure

of subcondensations, these must fall toward the galactic

center of gravity where the hierarchical structure will be

broken up by mutual interactions. This causes a shrinkage

of the dimensions of the galaxies. Occasionally certain
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subcondensations will resist disruption, and it is tempt-

ing to identify these with the globular clusters.

Let us now consider a gas cloud which has a temper-

ature initially in excess of i_ OK. The minimum mass

required for condensation of this gas cloud is given by

(9.33), with the effect of fully ionized hydrogen taken

into account.

For M = 10-SVV the minimum mass is 5 x 1011solar

masses. As contraction occurs the rate of radiation starts

to exceed the rate of release of thermal energy, and

eventually a point of temperature instability must be

reached that swiftly reduces the temperature to i0,000 °K.

Assuming that the linear dimensions have decreased by a

factor of 5 before this occurs, then the first fragmenta-

tion of this gas cloud will be into dwarf galaxies with

masses of about 3 x 10 8 solar masses. Further fragmenta-

tion will then occur as described above. These dwarf

galaxies will collide with one another and most will be

disrupted; some will escape into intergalactic space. We

may identify the massive spiral galaxies with a formation

process of this type.

Not all the gas in these galaxies will be formed

into stars; there will be less tendency for condensation
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in regions of smaller gas density. Such gas will con-

tract to the center of the galaxy, or, if the galaxy

has a fairly large amount of total angular momentum,

then the residual gas will contract to a disk passing

through the center of the galaxy. Further star formation

can then take place.

Let us now consider what are the typical

conditions in the interstellar medium. Again, for

convenience, we choose U = i. Now for the temperature

of this gas we choose T = l0 s OK, a figure that can be

obtained both observationally and theoretically for a

neutral gas. There are regions in the galaxy, particularly

in the neighborhood of extremely hot stars, where the

radiation from the star ionizes the hydrogen (T -- 104 OK),

but generally our figure is correct. Taking a value for

the density, p = i0 -as gm/cm s (equal to that in some of

the denser interstellar clouds), we find that the condi-

tion for gravitational collapse becomes:

> 1.2 x 10 3

M®

This result gives us a very basic clue to the

understanding of the formation of stars. We cannot
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expect any of the interstellar gas with a mass of the

order of that of the sun to become gravitationally

unstable and to contract to form a star. Single star

formation is not to be expected. However, gas clouds

of masses of the order of l0 s or 104 solar masses can

become unstable. By some means we must form stars of

this gas.

Here is what might happen once such a cloud does

begin to collapse. We know that the typical star in

space does not have a mass of 1,000 or i0,000 solar

masses. The largest that are known seem to lie some-

where in the range of 50-100 solar masses. We also

know that there are clusters of stars in space; so it

is not surprising that this model could give rise to

dense clusters of stars. We also see associations of

stars in space which have a few very bright stars

included among them (0 and B stars according to the

spectral classification). These associations are

observed to be expanding, that is, the 0 and B stars

are usually observed to be leaving some central region.

If their motions are projected back one finds that in a

typical case the stars in an association may have been
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at a common point approximately 1 to 3 million years ago.

This time also happens to be comparable to the lifetime

of the 0 and B stars on the main sequence. Thus observa-

tionally one can see that stars do form in clusters which

are not stable. Once having formed, the stars then expand

into space. One obvious way in which a star cluster might

be unstable is if all of the original gas does not form

stars. If some stars are formed and their surface temper-

ature rises enough so that they can ionize the residual

gas in the cluster and cause that gas to become hot

enough to expand out of the region of the cluster, then

the remaining mass in the form of stars would no longer

be gravitationally bound. If, however, most of the gas

went into stars, those stars would be gravitationally

bound for the very reason that the initial gas cloud out

of which they were formed became gravitationally bound.

Thus, if most of the gas goes into stars there results

a stable star cluster. If only a part of the gas goes

into stars, then an unstable cluster results, that is,

an association that will expand resulting in the presence

of individual stars in space as in fact we observe most

of the stars to be.
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The essential point in the formation of single

stars of mass comparable to that of the sun out of a

cloud that starts out with a large mass is the following.

Once such a cloud of gas begins to contract, the density

increases; the rate of collisions between constituents

also increases, a_proximately as the square of the

density. It is these collisions which provide all the

cooling mechanisms in that cloud. Consequently as the

cloud contracts the cooling becomes more efficient and

we will prevent the temperature from rising during the

collapse itself. It can be seen that when we ap_ly the

virial theorem to a subunit of this cloud, keeping the

internal energy in the form of heat about the same per

gram, and increasing the gravitational potential energy

in absolute magnitude per gram as the contraction continues,

then smaller and smaller subunits of the gas will them-

selves become gravitationally bound. Hence, as con-

traction continues and as the temperature does not rise

appreciably, the cloud can be expected to fragment into

smaller and smaller masses each of which will individually

become gravitationally stable. In principle this fragmenta-

tion will continue until the individual fragments become
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So opaque to their own radiation that, despite the

increased efficiency of the cooling-radiative processes,

the radiation produced will not be able to escape and the

temperature must start rising. Once that condition is

satisfied, i.e., once the gas comes opaque to its own

radiation, then we might expect the fragmentation process

to stop. When one examines the relevant numbers one

finds that the fragments should become opaque to their

own radiation when their mass is approximately equal to

that of the sun. In this way we can account for the

major features of observational astronomy in the form of

galaxies, clusters of stars, and individual stars.

There is one last aspect which involves a considera-

tion of the virial theorem. When a final fragment has formed

which is opaque to its own radiation, the central tempera-

ture must rise more and more. When the temperature

exceeds 1800_ the hydrogen molecules forming this fragment

start to become dissociated for the most _art. Quite a

bit of energy is necessary to dissociate these hydrogen

molecules, which means that the temperature cannot rise

very much above 1800° until those hydrogen molecules

have been dissociated. The amount of energy required to
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dissociate the hydrogen molecules forming any final

fragment is in general, much more than the gravitational

_otential energy that is available. This leads to a

region of gravitational instability entirely apart from

the conditions we had previously. Instead of getting rid

of most of energy gained from the contraction by radiating

it away into space, it is now being used to dissociate

hydrogen molecules and hence the collapse must continue.

During the time that the dissociation of the hydrogen

molecules is going on, the y for the gas falls below 4/3.

This is then an example for the other condition for

gravitational instability, namely that in a case where

¥ is less than 4/3, the contraction of a body does not

raise the pressure at a rate rapid enough to allow that

body to remain in hydrostatic equilibrium.

Actually we do not achieve stability when we

have finished dissociating the hydrogen molecules because

we find that by this time the temperature has approached

5,000 to 8,000 ° K and we have started to ionize the

hydrogen atoms. This requires even more energy. Further-

more, by the time we have really stopped ionizing the

hydrogen atoms throughout most of the volume of our
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fragment, the temperature is high enough to start

ionizing helium in the first stage. By the time helium

is singly ionized throughout most of the fragment, it is

doubly ionized at the center. We do not really have

a star formed until the hydrogen and helium are almost

completely ionized throughout most of the fragment.

In the case of a body such as the sun, it turns

out from some models that have recently been calculated

that the radius must become less than 57 times the

present radius of the sun before a final body can be

formed and be stable in hydrostatic equilibrium.
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i@. Physical conditions in Stellar Interiors

General Remarks

Efforts have been made for many years to determine the

physical conditions at various points in stellar interiors.

These attempts have improved with the passage of time and

the more realistic inclusion of various physical effects

in the theory. The development of the subject has been gov-

erned by the fact that the differential equations describing

the stellar interior are non-linear. Thus some elegant

mathematical analyses have been developed which enable stellar

models to be computed using analytic approximations to certain

physical properties; these models have the nice property

that computations for one assumption of mass and luminosity

can be transformed to other values of mass and luminosity

by using certain dimensionless variables in the calculations.

There are four basic differential equations which govern

the conditions in stellar interiors. The first of these is

that concerned with the condition of hydrostatic equilibrium.

In most main sequence stars atoms in the interior are

largely stripped of electrons and hence the gas may be

said to obey perfect gas laws, except under conditions of very

high densities (>104 gm/cm s) where electron degeneracy sets
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in. Let us consider, then, a thin spherical shell of radius

r, thickness dr about the center of the star. Spherical

symmetry will be assumed. Let P be the pressure at r and

let the increment in P as we proceed from r to r + dr be

dP. The difference in pressure dP represents a force, -dP,

acting on a mass element of unit cross-section, in the

direction of increasing r. This force must be balanced by

the force of gravitational attraction to which the mass

element is also subjected. If we define M(r) as the mass

included within a radius r and p (r) as the density in the

•ayer in question then by Newton's Law, the attractive force

between the mass element p (r)dr and M(r) is given by

G M(r)pdr/r 2. Hence, the condition for hydrostatic equili-

brium may be written:

-dP = G M(r) pdr
2

r

d__P= _ G M(r) p

dr r2 (10. l)

Now, from our definition of M(r) we can write:

r

M(r) = _ 4nr 2 p(r) dr
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Hence, the conservation of mass within the star may be

written in the form:

d M(r) = 4nr 2 p(r) (10.2)
dr

This is the second of the differential equations which

govern conditions in stellar interiors.

The energy flow at the surface, or more generally at

a radius r, for a star, as measured by the luminosity of

the star, is provided by the release of energy in the various

nuclear reactions going on within the interior, or by gravi-

tational contraction. Thus, if ¢ is the energy released

per unit mass per unat time, the energy loss through a

spherical shell at radius r is given by-

L(r) = re P(r) 4_r 2 dr

o

Thus, the conservation of energy within a star may be

written in the form:

= 4nr 2 _ r)¢ (10.3)
dr

where L(r) is the net outward energy flux.

The fourth differential equation we wish to obtain is



-49-

one which describes the transport of energy in the stellar

interior. In general there are three methods by which

energy transport might take placeT by conduction, convection,

and radiation. All of these modes of energy transport _re

of importance in some aspect of the theory of stellar interiors.

Conduction is, however, only important in cases of electron

degeneracy. We will not be concerned with this problem at

the present. Radiation is important in situations in which

the temperature gradient is not very great, while convection

becomes increasingly important as the temperature gradient

is increased.

Energy transport by radiation takes place more rapidly

for large temperature gradients than for small. It is

impeded by high densities and high opacities of the material

through which it must pass° These conditions are expressed

in an equation for the temperature gradient necessary to

transport a given flux of energy (Chandrasekhar 1939, Schwarz-

schild 1958):

dT 3 L r
(io.4)

In this expression T is the temperature in OK, a _s Stefan*s
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radiation constant, c is the velocity of light and K is the

opacity of the material, that i_ the mass absorption co-

efficient in cmS/gm.

Let us now consider when energy transport by convection

will take place. For this, consider a volume element of the

gas which we will take to be large enough that adiabatic

conditions will hold if we give this element a sudden upward

displacement. In this displacement pressure equilibrium

will be maintained. But under adiabatic conditions we have

where 7 is the ratio of the specific heats. Thus as this

element of gas rises within the star it must expand to

remain in pressure equilibrium with its surroundings. If

the density_of the mass element is less than its surroundings

as it rises the element will continue to rise and hence

that region of the star will be unstable to the onset of con-

vection. If, on the other hand, the rising mass element

becomes more dense than its surroundings, clearly th_re

will be a downward force exerted on it and the element will

return to its initial position. The condition for stability

against convection then is that the actual pressure gradient

in the star must be less than that corresponding to a density

gradient in adiabatic equilibrium. The steeper one makes
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the temperature gradient, the more one goes from the

situation in which the Kising mass element is denser than

its surroundings to that where it is lighter than its

surroundings. Once-_he adiabatic temperature gradient is

exceeded by the actual temperature gradient within the

star, then the structure becomes unstable against con-

vection.

Now, under adiabatic conditions the temperature varies

with the pressure according to the relation

T P(Y-I)/Y

A rising volume element having a smaller density than its

surroundings will thus have a temperature excess. At higher

levels it loses its excess heat by viscous effects and by

radiation. This energy transport will very quickly reduce

a very steep temperature gradient until it is close to the

limiting adiabatic gradient. Hence, it may be seen that

for steep temperature gradients, nearly all transport of

energy is by convection; while for temperature gradients

lower than the adiabatic value the energy transport is

entirely by radiation. Thus for the case of convective

equilibrium we have the adiabatic condition holding in

the star to a good approximation:

1 dP = _Yd2 "

P dr p dr

(io.5)
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In general we can expect convection to be important

near the centers of stars where thermonuclear energy genera-

tion, which often varies as a high power of the temperature,

tries to establish a steep temperature gradient. Farther away

from the center of a star where energy generation is not

important the temperature gradient becomes less and energy

transport is by radiation. However, convection can also

set in in a region where a major constituent of the gas is

partly ionized. As a volume element of the gas rises in

such a region recombination takes place. This heats the

volume element which continues to rise until the major

constituent has become nearly all recombined. This _rocess

is responsible for establishin_ outer convection zones

in stars where hydrogen is partly ionized.

Convection is an extremely efficient means of transporting

energy because, with the typical velocities for convection

in stellar interiors, we may bring matter through distances

of the order of the radius of a star in a matter of hours

to days. Because of this tremendous efficiency of con-

vection in general, in our calculations concerning stellar

structure we can usually assume that the temperature

gradient is that which corresponds to an adiabatic displace-

ment. Actually, if the temperature gradient were exactly
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equal to that for an adiabatic displacement, the rising

element would remain in both density and pressure equilibriun

with its surroundings, and clearly would carry no energy.

If, however, we make the temperature gradient just very

slightly super-adiabatic, then the element when it reaches

the top of its motion would be hotter than its surroundings.

It would then cool by radiation. Thus we see we have

transported energy from the center of the star rather

efficiently.

At the surface of stars there must be a transition from

energy transport by convection to energy transport by

radiation, as obviously energy cannot be transported by

convection into space. In the transition region we must

somehow take into account energy transport by radiation

and convection simultaneously. The equation governing this

situation must demand that the flux remain constant, where

the flux is calculated from the sum of that carried by

radiation and of that carried by convection.

We now need to consider some auxiliary equations--first

of all is the Gas Law. Normally, matter in the laboratory,

achieves a density of a few grams per cm s , and then becomes

very resistant to compression, simply because the electron

structures of the atoms become so close together that they
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are essentially touching. Deep in the interior of a star,

the atoms are completely ionized and the typical dimensions

of the nuclei which are thus exposed are something clQser to

10-1_cm. rather than the roughly lO-Scm, which ar_ typical

of atoms. Hence, there is plenty of room for the electrons

and the ions, and the perfect gas law bec¢mes valid until

we _each very high densities; the condition that n_gates

USe of the perfect gas law is the settin_ in of _iOct_on

dogeneracy. For the perfect gas case

P-kN ----u 0 '

U

where _ is the mean molecular weight.

If the star in question is sufficiently _a_si%1_,

radiation pressure may become important in which case,

Pr = 1 aT 4 .

3

In order to apply equation (i0._), that i_ th_ _qt_i_n

governing L(_), one must know the form for t_S mass abso_tion

coe_flcient. For the case of absorption a_d _mi_sion due to

atomic processes, one must consider the ene:gy level str_ctu_e

of the atom, that is, the sequence of bound discrete states

merging into the continuous spectrum past the 3onization
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limit. In this case we may talk about tran_itlons between

bound states (bound-bound), and between the continuum and

bound states (bound-free, free-bound). Clearly the bound-

bound transitions that can absorb energy within the stellar

interiors must be exceedingly hard to calculate, because there

are so many different bound states and different atoms.

There is no easy way to generalize the energy level 3paclng.

One must resort to computer techniques; by knowing all the

atoms and all the bound states under consideration, f_xlng

a temperature and density, one may calculate the distribution

of atoms in their bound states and among the various degrees

of ionization by statistical equilibrium considerations,

and then calculate what all the transitions are within this

array. People are actually doing this, because of their

desire to get these opacities as accurately calculated as

possible, but clearly it is exceedingly diflicult to do

from a numerical point of view, and this effect is not the

most important source of opacity, but is a correction to the

opacity which one gets from the other processes° In the deep

interior of the star, most of the opacity seems to come from

bound-free transitions, not of hydrogen and helium which are

completely ionized, but of some of the heavier atoms, such

as the carbon-nitrogen-oxygen series or the stlil heavier atoms
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of silicon, sulfur, argon, calcium, iron and so on. The

importance of heavy ions is emphasized by the fact that the

cross section varies as Z4 for bound-free transitions.

The free-free transitions are those which occur

in the continuous state. The cross section for free-free

transitions is largest when involving those states which

lie closest to the ionization edge, varies as Z2, and is

largest for small energies.

There are other processes which contribute to the opacity,

such as electron scattering (Compton, Thompson scattering),

the cross section for which is

a = 8_e 4

3m_c 4

The above are the processes that are of greatest

importance for opacity deep in the interior of the star.

As w_ get closer to the surface, other things can become of

much greater impoEtance. For example, when the temperature

becomes low enough so that we can have molecules, we can

then have absorption by molecular lines, molecular bands,

etc., which is once again a complicated calculational

process. We can also have Rayleigh scattering by the atoms.

There also are a number of other minor processes, the

most important one is the scattering by the negative hydrogen
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ion, H-, that is, an ordinary hydrogen atom to which an

extra electron has become attached, very loosely bound.

There can be both bound-free and free-free transitions

of the negative hydrogen ion. These account for the

majority of the absorption processes at temperatures

around a few tens of thousands of degrees. The importance

of the process really goes with the abundance of the negative

hydrogen ions that one can have. Though hydrogen is the

most abundant constituent of the stellar interior, the

amount of H- we can have depends upon the availability

of the electrons. If we have too high a temperature, then

not only do we prevent any appreciable amount of H- from

existing in equilibrium, but we even start to ionize the

hydrogen itself. If we have the temperature too low,

then all the heavier metals with low ionization potentials

(the most important of which, for example, is potassium

which has an ionization potential of only 4 electron

volts) all become neutral and there are not extra elec-

trons around which can be captured by the hydrogen

atoms. There is thus clearly a peak in the temperature

range at which negative hydrogen ion absorption is most

important.
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Much of the classical analysis of stellar interiors

makes use of an approximate formula that fits many of

the processes at higher temperatures. This formula was

developed by Kramers and reads

K = constant x pT-3"5

(i0.8)

The form is adequate for a first look at problems in

stellar structure but does not do for more realistic

calculations.

Figure 10.1 shows the behavior of the opacity in a

stellar interior for various densities and temperatures.

The peak in the opacity curves tends to come in the region

where many stars have outer convection zones. The low

temperature end is shown in more detail in Figure 10.2.

These figures contain the results of fairly elaborate calcu-

lations carried out with a computer code developed at the

Los Alamos Scientific Laboratory by A.N. Cox and his

collaborators. The composition assumed in the calculations

is approximately the solar composition discussed in section

i0 of these notes.
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Electron Degeneracy

As mentioned before, the use of the perfect gas law

becomes inappropriate when high densities are encountered

(e.g. i0 e gm/cc at temperatures _ i0 _ OK). For a perfect

gas one expects the usual Maxwell-Boltzmann distrlbution

law to hold for both ions and electrons present in the

stellar mixture. This assumes that there are no explicit

restrictions on the energy or momentum of a given particle.

For the case of a very dense electron gas, however, the

Pauli exclusion principle put an upper limit on the

number of electrons which may occupy a given "volume"

of momentum space. This restriction is expressed as

follows:

N(p) dp =_ 4_padp

where N(p) is the number of electrons per unit volume of

space in the momentum interval p to p + dp. The factor

of two arises from the two possible spin orientations°

The constant h is Planck's constant.

We may compare this to the equivalent Maxwellian

distribution,

N(p) dp = ,N_ e-P_/2mkT 4_p a dp

(2_mkT)_

(i0. i0)
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where Ne is the number density of electrons, and

Ne = pN0
Ue

(lO.11)

where _e is the mean molecular weight per electron.

If the exponential factor in equation l0.10 is not

too different from unity, and

N e 2

(2 _mkT )%_ > h a

then there is a violation of the Pauli principle and the

perfect gas law will not hold.

rewritten as,

p > 2(2_mkT)9 _

h s

This condition may be

U_ee = 8. ixl0 -9 UeT_

No

(10.12)

As an example consider the case when Ue = 2 which holds

for mixtures of predominately heavy elements, and T=I0 s OK.

We then have a violation when p > 1.62x104gm/cc.

An important case arises when the temperature of the

electron gas is zero. In this case all the electrons will

have completely filled all the lowest energy states avail-

able. Clearly then there is some maximum momentum Po

such that no electrons will have moments above P0"

That is
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N(p)dp =<23) 4np2dp , P< Po

N(p) = o , P>Po"

If N(p) is integrated from p=o to P=Po the result will

be N e, that is

N e = 8n 8n
_P°p_dp = 3-_ P0' , or
o

1

p_ = [3h s Ne] E

(i0.13)

The energy corresponding to Po is called the Fermi energy.

The pressure due to this completely degenerate gas is

given by

where

and

P = _m4c 5 f(x) = 6.01 x i0 sa f(x),

2h 3

(iO.14)

f(x) = X(2XS-3) (Xs + l)1]s+ 3 sinh-lx,

(iO.iS)

X = _0

mc

For x _ _ (extreme relativistic momenta),

f(x) _ 2x 4 - 3x s + .... (x _ _).

(iO.i6)
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For x - o (non-relativistic)

f(x) _ 8 x s - 4 x 7 + 1 x 9 - 5 x 11 +... (x - o_.

5 7 3 22

Chandrasekhar (page 393, loc. cit.) finds that a

necessary and sufficient condition for the setting in of

degeneracy is

4_ a x(x a + i) I_

(sea/k_) a f (x)
<< 1

In a crude sense let the boundary between degenerate

and nondegenerate matter be given by,

4n _ = f (x)

(mcS/kT) s x(xS+l)_ s

As an example of how the above considerations affect

the course of stellar evolution, consider the evolutionary

track for stars whose internal pressure was given by

the perfect gas law which was found earlier, and was

given (for a uniform gas sphere) by,

T = 4.1 x l0 s M_ p_@_ °K,

where M is solar mass units. If the star is in some

relatively late stage of evolution we may expect large

abundances of nuclear reaction products to be present.

* For a more complete treatment and derivations of the

8bore, along with a tabulation of f(x) see Chandrasekar,

Introduction to Study of Stellar Structure_ Chapter I__O0.
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Let us suppose this is the case.

for U is given by

where

An approximate form

+ (Y/by) + z)

2

1 + 3X+ 0.5Y
(io.17)

X = abundance of hydrogen by weight

Y = abundance of helium by weight

Z = I-X-Y = abundance of heavier elements

by weight.

For the case under consideration, X = Y = 0, and

U=2.

An approximate form for Ue is

_e = 2 ,
I+X

which for our case equals two*.

We thus have N e = pN 0 .

2

The evolutionary track given does not hold for those

stars whose internal pressures are predominately governed

by the pressure of radiation. We define the boundary

line between stars whose internal conditions obey the

* See Chandrase_har loc. cit. p 254 et. seq. for a

fuller treatment of the _'s.
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perfect gas law and those whose internal conditions are

regulated by radiation by an equality of pressures for

the two cases, i.e.,

! =
3 U

or T = 2.55 x 107 piIs.

The track line corresponding to this condition

occurs at 5.5 solar masses. For stars heavier than

thi_ radiation pressure is predominant. In such a case

we say 7 = 4/3 and the relation U = -_ is valid. Thus,

U = VaT 4 = 3 GM s,

5 R

and making the appropriate substitutions the track equation

becomes,

T = 1.92 x 107 x M1/epl/s .

We note that the temperature depends on density as

before (to the 1/3 power) but the effect of mass is less

pronounced.

The relevant tracks are plotted in Figure 10.3 and

illustrate the behavior derived above. Again, the cutoff

between perfect gas and radiation occurs at a mass of 5.5

solar masses.

We now continue with our analysis of the degenerate

case o
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The value of P0 can be computed and thus f(x)

ascertained. The boundary of degeneracy in terms of

p and T can be found from

T = <x f(x) _ mc_____ .
(x_ + i) V_ 4n s k

If this boundary is plotted on the same graph as

the evolutionary tracks for stars of various mass

Figure 10.3 is obtained. We note that stars of mass less

then about 1.3 enter the degenerate region. For these

stars the pressure due to degenerate electrons is so

high that further compression is not then possible.

This is essentially the end point in the evolution of

a star of small mass. It settles down to become a white

dwarf, achieving in this process some maximum temperature

which depends specifically on its mass. For example,

a star of one solar mass might achieve a maximum tempera-

ture of I0 e 0K.

For a completely degenerate white dwarf there is

an upper limit on the mass of about 1.4 solar masses.

This comes about because for degenerate stellar configura-

tions above the mass limit it is found that the gravita-

tional force will always exceed the pressure force due

to degeneracy independent of the radius of the star. The
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star will then be unable to attain an equilibrium con-

figuration unless it rids itself of some mass. The

limiting mass condition is given roughly by,

M < 5.7_____56

_e a

solar masses. Thus, for _e = 2, M < 1.44. For the

case of large stars such as red giants it is observed

that many are ejecting mass. If these stars are to

become white dwarfs they must reduce to the white dwarf

limit. This is a potential source of stellar catastrophe.

A further point in connection with Figure 10.3 is

the form of the degenerate boundary curve. One notes

that there appear to be two asymptotes - one for low p

and one for high p. These are related to the form of

the gas law for large and small x, i.e.,

P = 1 3/!_ h a NeS_ (x - o)

(x .
P : 1 (3_i_ hc Ne4_

_77J

A more complete treatment of some of the above

problems requires a more sophisticated picture of

stellar structure.



n
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Polytropes

As was discussed in previous sections the pressure

at the center of a star is usually very high. This

high pressure may be obtained by having a high density

and low temperature or a low density and a high tempera-

ture at the center. Which one of these two combinations

holds in the center is a matter for detailed investiga-

tion. One can, nevertheless, make a considerable investiga-

tion of the properties of stellar interiors by assuming a

specific relation between the pressure and the density,

and saying that the temperature must be whatever is

necessary to satisfy that relation throughout the star

according to whatever gas law holds.

The theory of polytropes was built up early in the

century by making the assumption that the pressure P is

related to the density at any point by

P = K pY .

We associate y with the polytropic index n by the relation

. From the above we have1

y-i

iaP =z
P dr p dr

which is the equation for convective equilibrium.
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For the case n = 3, one finds that this leads to

conditions which closely resemble the case of stars in

radiative equilibrium.

as

with,

then we find

If we now consider two of the equations for equilibrium

dP = - GM(r) p
dr rs

r

M(r) = _4nr 2pdr,
0

(i+n )/n (.i+ n )/n n+ 1
P ='Kp = KA 8

Making the appropriate substitutions we find,

1 - i_ lr dd < _r> 8n[ (n+ 1 )K A_ --' --r r' = - '
h 4nG

If we define the dimensionless variable _ as

r = _= , where

ii?= E (n+I)K4_G k_ -

then we obtain the "Lane-Emden equation of index n",

plays the role of a temperature, then

If we let p = k8 n , where A is a constant and @

I d < rm _r_ = -4nGPrm dr
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1 d •

The boundary conditions are given by letting k be

the density at the center of the star so that @ is equal

to unity at the origin. If we substitute
1

P = Kk I+_ 8n+l

into the equilibrium condition for the pressure we find

1 +l enk n (n+l) d@ = GM(r)

dr r _ P '

so that at the origin,

8= I, r = o =

and

de r = o = _
-- 0

dr

The condition at the stellar boundary is that the

radius of the star is given by the smallest value of _ for

which p and hence @ is equal to zero.

The actual solutions for arbitrary n must, in general

be carried out numerically*.

The numerigal solutions are usually @tarte4 by

considering a series solution for _<l, that is

e = 1 + n_q_ ...,
6 120

<<i.

* An-e--xhaustive discussion of the Lane-Emden equation and

its solutions are given in Chandrasekhar's book on stellar

structure.
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For a polytrope in hydrostatic equilibrium one finds

that the gravitational potential energy is given by

-n = 3_ QM_d
5-n R

In the case n=0 this corresponds to the a uniform sphere

as discussed before. The maximum value of n is that

corresponding to a sphere which is infinitely condensed,

that is n=5. Values between zero and five therefore

represent possible configurations. The polytropic index

is then a measure of density distribution of the sphere.

For two values of n, namely 1.5 and 3 one obtains the

following for the ratio of the central density to the

average density;

Pc/P = 5.99 , n=l.5

Pc/_ =54.18 , n=3

Some interesting conditions obtain

at stellar centers for the convective equilibrium (n=l.5)

and approximate radiative equilibrium (n=3) cases,
l

In the case of convective equilibrium, n=l.5 and

y = _, which is the case for a perfect gas. Thus

3

P = Kp s/s = NkT

At the center this becomes,

or,

5Is = NkTcPc = Kpc

K = Nk T c = No kT c

Pc
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The pressure at the center may also be related to

the mass and radius of the star*. These relations yield,

T c = 9.62 x 108 p1_ M_S ,

where M is in solar masses and T c is the temperature at

the center. This is to be compared with the results

obtained previously for the case of a uniform star. In

this instance we note that the dependence of T c on p and

M is the same except that the numerical factor is some-

what greater.

Similarly, if the star in question is in radiative

equilibrium then

T c = 1.98 x 107 MS 8 piJS ,

which is practically the same as for the case of a uniform

star derived previously.

* chandrasekhar, loc.cit. , p 99",' equations 79 -'B1.



-75-

ii. Thermonuclear Reaction Rates

As indicated in the introduction the energy source

for stellar interiors is due to thermonuclear reactions.

These are of many types and involve the many species of

nuclides found in stellar interiors. This section will

discuss some preliminary aspects of thermonuclear reactions

which will be needed for detailed studies.

The ions in stellar interiors are found to be non-

degenerate in almost all cases. That is, they have a

velocity distribution which is Maxwellian. Some degenerate

cases have been postulated ("neutron stars") but these have

not been observed to date. We shall find that reactions

take place at energies of 5 - i0 kT or more.

We shall be primarily concerned with two kinds of

reactions, namely resonant and non-resonant thermonuclear

reactions.

Non-resonant Reactions

Given two nuclear species, denoted by subscripts 1 and

2, with number densities n I and n 2, the number of reactions

per unit volume per second r is given by

r = n I n 2 < s v > ,
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where < ov > is the average value of the product of the

reaction cross section (as a function of velocity) and

the relative velocities of the nuclei.

The quantity < ov > is then given by

_ C(V) V N(v)dv

< OV > =
¢0

2 .(v)dv
0

where N(v) is the number density of nuclei having relative

velocities v.

For reaction rates between like species,

r = _n 2 < _v >.

If nl(_) and n2(_) are the velocity distribution functions

for the two types, then the reaction rate may be expressed as,

..)

r = ,r.[nl(_) n2(v) I_I - v2 I a(v I - _2 ) d3j I d3v2 ,

where the integrals are over both velocity spaces.

If we assume a Maxwell distribution of velocities,

that is

then

r = nln 2

-- >,/"ex<

3/2
(mlm 2 )

(2nkT )a
id3_ld3_2I_i-_21 c(_ l- _2 ) X

(cont.)
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2 2
r mlv I

+
m2v 2

x exp - L 2kT

It is convenient to change to center of mass coordinates

at this point, that is

let v = v 1

and

so that

m I + m 2

-e

V 1 = V + m2

m I + m 2

for the relative velocity

(the center of mass velocity)

v, and

= - ml •
m 2 + m I

Therefore we may write,

2 2
mlVl + m2v2 (ml + m2)_ 1 (mlm2)v2

= +

2kT 2kT 2kT (m I + m2)

The integral over d3V and over the solid angle in d3_ can be

carried out immediately. This gives

m_2 )3/2 _C_ mlm2 _ v2r = nln 2 4_ k2_k T (m I + m2 ) dv v 3 a (v) exp kml+m2J 2k---T "

At low bombarding energies and far away from resonances

nuclear reaction cross sections can be e_pressed in the form:
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0 = S exp<- 2_e2ZIZ_2_hv J

where E is the relative energy which corresponds to the

velocity v, e is the electronic charge and Z_ and Ze are

the atomic numbers o_ the colliding particles. We write

, m1_ . S is a slowly varying func-E =(_2)mv s where m = m1+m e

tion of the bombarding energy which is considered to be

constant in the present formulation o_ the problem. The

reaction rate becomes:

r = 2nln s nm-- (kT)_ dE exp - + _'_; ,

where B = 2_Z_Z2e a .
my

For convenience in later discussions we will define

_= _%v "

The integrand of the last expression is a sharply

l>eaked function and reelects the _act that the cross

section increases as the energy increases (because the

probability _or penetration of the coulomb barriers

increas_ whereas the Maxwell distribution falls o£f

exponentially at high energies. The product of the

Maxwell distribution and the cross section will there-

fore exhibit a marked maximum.
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The integration indicated cannot be done to yield a

closed solution, so that it is expedient to approximate

the strongly peaked function of the integrand by a Gaussian

form which is integrable. This is done by matching the

Gaussian and the integrand at the maximum so that the

curvatures are the same.

If the integrand and Gaussian are written as

ex_- (x+ax-½)]_ cexp[- (x-b)S/c_,

then we find that b = (--_)_, c = sap [-3(_)_], and a s= _(_)_

co

whereas c _o_(exp[ - (x-b)_/_s]_ c_/_ ,

for b reasonably far from the origin.

Therefore,

£co dx exp[- (x+ax-%)]_ 2

If we let n i = N_o0X i , where x i is the fraction

A i
by weight of constituent i, then the number of reactions

per second per nucleus of type 2 is

4.34 x l0 s PXi___+A.) STSe-T , (sec- i)

where

= 42.48
A I + A_ Te

S = oE exp 31.28 Z IZ s k(A I+A_)E "
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is in barns, and Teis in i06 OK, E in key. in the

center of mass system of the particles.

The quantity S can sometimes be determined for a

specific reaction_by measuring the reaction cross section at

the lowest possible bombarding energy and putting the

measured value into the equation for S. In other cases

S must be calculated from resonance theory or from the

statistical properties of nuclear resonances. This will

be discussed in greater detail later on.

Salpeter has made calculations indicating correction

factors which must be applied to the expression for

(the reaction rate per nucleon) which correct for the

This factorapproximation of the integrand by a Gaussian.

is

5 35 + ...
F(7) = 1 + _ - 288_s

A further modification must be taken into account if

the colliding particles have relative energies approach-

ing the Coulomb penetration energies. S will then be given

by

MR s

S = 0E exp E2_ +.E_Iz__ X 1.2150XI0-43

where R is the nuclear radius of interaction in i0 -Iz cm,

M is the reduced mass in a.m.u., E is in kev_and S is in
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kev-barns.

For future reference we compute the energy at which

the maximum number of interactions is liable to take

place. This number is just the maximum of the function

exp __T + B½_ ,

which cccurred in the integrand of the integral discussed

previously. The maximum energy E m turns out to be,

E m = 1220 _ Z Is%e AIA _ Tee-_ in electron volts.

L A I+A s _'

The half-width (AE) of the Gaussian obtained previously,

that is, the energy width corresponding to one half the

height of the Gaussian is given by

AE½ = 17.9 (TeEm)½ electron volts.

The energy spread corresponding to a i/e reduction

rather than ½ is

_EI/e = 21.5 (TeEm)½ ev.

The above may also be expressed as,

1

AE½ 625LZIS Zm s A_ _ and= A_+A s TeS ev.,

AEI/e 750iZ_ 2 Zm s AIA--s= _+Am TsS ev.

The peak in the integrand considered is called the

"Gamow" peak.



-82-

Resonant Reactions

The results obtained for non-resonant reactions

were based on the assumption that the nuclear cross section

involves essentially only the barrier penetration probability

factors. If there are some additional factors of a purely

nuclear character which cause the nuclear cross section as a

function of energy to have local maxima in the form of reso-

nances, the thermonuclear reaction rates can be very much altered.

A useful expression describing the cross section at

resonance for a reaction involving an incoming particle

! and an outgoing particle _ is the Breit-Wigner single

level formula which is,

_ (a,b) = _aS gFa Fb

(E -E n )s +¼F •

where Ka is the de Broglie wavelength for particle a

divided by 2_, Er is the energy at the resonance peak,

F a and Fb are the full widths at half maximum for the

emission of particle a or b from the compound nucleus, F

is the sum of all partial widths, where for most reactions

that we will consider F = Fa + Fb. The quantity g is the

so called statistical factor

g = 2J+ 1

(2S+'l) (2I+l)
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where J is the spin of the compound state, S is the spin

of the bombarding particle and I is the spin of the target

nucleus.

Since the resonance cross section at resonance is

so large we may assume essentially all the reactions take

place at E r. One then obtains,

r = 4_m_ n_ [ " ml m9 3/_2_kT(m, +ms ) i Vr3

m

F_ m, mm-., Vr_ l ja(v)dvx exp 2kTJ
o

The integration over the cross section may be done

over the range from -= to = with little effect on the final

answer since the contribution of the far tails of the

resonance contributes little to the integral_

.r a(v)dv _ 2_laSg _a_Fb ,

Thus • "

where kaS is evaluated at

nucleus is then,

E r • The reaction rate per

p = 4.,81x10S _3/s I'iFb (_A_+___ _/s exp- [0"Oll6Er-I -I ,
A IT e r kAIA s j Te j sec

when E is in ev.
r
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Application of Dispersion Theor 7 of Nuclear Reactions

We have written down the probability of getting a

certain number of reactions which depend on the two assumed

forms for the nuclear cross section curve° and the nuclear

physics involved concerns these two assumptions regarding

the form of the curve. Now, let us consider the formulation

involved in the dispersion theory of nuclear reactions,

which is due to Wigner and Eisenbud*.

Let us assume a potential of the sort shown in figure

ii. 1

With this oversimplification we are making use of a "black

box" procedure. We are not attempting to understand in detail

the actions of particles in this "black box" but rather the

behavior of particles at all points exterior to the "black

box". If we consider the probability that a particle can

escape our potential, we see that this probability may be

*E.P.?_gner, L.Eisenbud, Phys. Rev., 72, 29(1947)
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written as the product of an internal and external probability.

By internal probability we mean the probability that a

particle in the well will come to the surface, and by external

we mean the probability that a particle at the surface

will escape to regions outwards where we think we understand

something about the behavior of the interaction because it

is electrostatic in nature• Thus we write

F = 2 k P 78

where k is the wave number of the particle,

k= _ v-- = 2.19xi0 9 AIA_E" cm-1

m I +ms 4_ A_ +A_

P is the probability for penetrating the Coulomb and centri-

l •

P=
F s + G s

7 s
is the reduced width of the particle in the level under

consideration. F and G are the regular and irregular

solutions to the SchrSdinger equation for particles in a

Coulomb field. These solutions are usually carried out

in terms of the variables _ and _, where

p = kR, _ = Z_e___ _ = 157.4 Z_ %/ A___ h½

_v k [A I+As ]E J

R is being the distance from the origin represented by the

boundary of our "black box". This method of representing

fugal barriers and has the form
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nuclear reaction rates has certain deficiences which are

associated with the assumption that there is an infinitely

sharp boundary within which the forces are nuclear and

outside which the forces are electrostatic. Actually

nuclear forces don't stop abruptly; instead they decay

fairly rapidly, but smoothly. The Coulomb forces always

remain effective, even inside the nucleus.

Using our simplified representation it has been

found best to take the value of R somewhat larger than

the actual radii that would be expected for nuclei.

Furthermore, since we are calculating the probability of

barrier penetration of one charged particle through the

Coulomb barrier with respect to a second charged particle,

we take R as being the sum of the radii of the two particles.

The results are fairly good if we take a large value of

R, that is

R : 1.45xi0 -Is (A I_ + As_S)cm.

This involves the assumption that nuclear matter is in-

compressible and the radius of a nucleus may be written

as proportional to the mass number to the 1/3 power. We

note in passing that measurements of the nuclear radius (obtained,

for example, bombarding a nucleus with high energy electrons,
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whlch have no nuclear interaction properties) indicate that

the proportionality constant one should normally use for

the radius would be smaller, about l.lxl0 -13 cm. Our

value is found to work best within the famework of this

series of approximations, however.

We do not develop all the properties of Coulomb

wave functions in detail. The reader seeking a quick

summary is referred to a paper by Block, et al, in Reviews

of Modern Physics, 2__33,p.147, (1951), and for a collection

of methods for calculating the values of Coulomb wave

functions for all regions of the p - _ plane, there is

another paper which was written by Fr_berg, Reviews of

Modern Physics, 2__77,p.399 (1955).

As far as thermonuclear reactions are concerned, we

are primarily interested in the bombardment of particles

of very low relative velocities, or very low relative energies.

Consider what this means in terms of p and _. Now,

_=kR

where k is proportional to the velocity, hence the value

of k will tend to be unusually small for the region of the

p - _ plane in which we are interested. Similarly, _ is

inversely proportional to the velocity; the velocity is
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unusually small; hence _ will be unusually large for the

particular bombarding energies in which we are interested.

For these restrictions on p and _ we may use the Bessel-

Clifford expansion to calculate the coulomb wave functions.

This expansion is discussed in more detail in Fr_berg, loc.

cit.

For low bombarding energies, G s is much greater than

F s . F is the regular solutiqn to the Coulomb wave equation,

and approaches zero near the origin. G is the irregular

solution, and diverges near the origin. Hence, since we

are approaching the origin,

G _ >> F s .

Therefore, P _ G t = , where we now indicate the

DL_ eL s

angular momentum dependence by the subscript L,

and

1 _ 2 SL

DL2 [(2L)!]s

Let us write, for convenience,

2 _ L

q = [ (2L) |32

Because _ is large,

e e_ >> i,

thus,

[ (LS+_ s ) ([L-I]_+D 2 ) ... (i_+_ s) ] 2U_

(e2n?-l)

1 _ 2_ q psL

GLs el."

[(L2+Dm) (L_I)S + Ds)... (i_+_)]

exp (-2n_) .



For L = 0, q = i.

In the low energy limit,

[ 1 "'eL =- (2 '

½
where x = (8p_) .
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Now, we use the Bessel-Clifford expansion.

(x)

Note that "'^_-_'" dependence _=,,_=== _=_ _= _,,e (p_)V_ _ _AI_ _,_ _ _ _A,_

Thus (8p_) ½ is a number that is characteristic of the reac-

tion. It depends upon the properties of the target nucleus

and the bombarding particle only. 8, however, depends quite

strongly upon the angular momentum. _L+_ (X) is the modified

Bessel function of the second kind*.

If (8p_) is a large number, then one may use the asymptotic

expansions for the K's. Thus we have outlined the evaluation

of barrier penetration factors for low bombarding energies in

these thermonuclear reactions.

Another approach, using the WKB approximation, has been

used by Burbidge, Burbidge, Fowler, and Hoyle (Rev. Mod. PhYs.,

29, 547 (1957)).

Unfortunately, the conditions that p is small and _ is

large are not always met in thermonuclear ractions; for

example, considering such reactions as those between two

*See British Association Tables, or Watson, G.N., "Treatise

on the Theory of Bessel Functions", Cambridge, New York.
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carbon or two oxygen nuclei, one finds that the optimum

thermonuclear bombarding energy isnot in the region of the

p - _ plane where we can use the Bessel-Clifford expansion.

Another method is necessary. Fr_berg's paper is particularly

useful in this respect -- it plots those boundaries in the

9 - _ plane which separate regions of validity for proper

approximation for the Coulomb wave functions.

Consider again

F= 2 kP 7_L "

P, the part we have just evaluated, is external. The internal

part depends on nuclear structure. In any individual case, v_L

might be large or small depending on the accident of nuclear

structure involved. We can make some general statements about

it, however. If we do not know the nuclear properties for

a reaction adequately, we must resort to these general state-

ments sometimes if we wish to estimate the thermonuclear

reaction rate.

The sum rule limit due to TeiQhman and Wigner is given

by

< 3_ M_i
L _ 2 mR

where m is the reduced mass of the two particles. In some

light nuclei, for reactions involving protons, neutrons,

and alpha particles, one can find values of 7_ which are



-91-

2

close to this limit. In general, the values of _u are

much below this, but for some particular nuclear reactions

involving certain resonances of the compound nucleus, v _
L

is near the sum rule limit. This expression was derived for

the emission of protons or neutrons; alpha particles seem to

obey this same rule. There are alpha particle reduced widths

which are near the sum rule limit, none much greater, and many

much smaller.

The reduced width YS, k ' is the measure of the probability

that a particle within the nucleus will arrive at the surface*.

In more specific terms ¥s is a measure of the wave function
t h

for the particle at the nuclear surface.

While it may be useful to have a maximum value for the

reduced widths, the fact that most are much less than this

maximum leaves us in a somewhat nebulous position. Some

sort of average value, at least, would be useful. To clarify

this, let us consider a single particle interaction with a

nucleus. Consider a single particle moving in a potential

*For tabulated values of Ys, see the periodically revised
t

reviews by Ajzenberg and Lauritsen, and Nuclear Data Sheets.
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well; at the moment the other particles in the nucleus

act on our single particle only in the sense that they do

provide a potential well in which that single particle

can move. If the particle is in a stationary state, then

t

the wave function for the particle must satisfy certain boundary

conditions. This requires that the energies taken by the

particle in the well can have only certain discrete values

(quasi-stationary states exist above the bound part of the

well which decay with the emission of the single particle

into the external region).

Now, let us take a different case. We bombard the nucleus

by our single particle, gradually raising the energy of our

particle. In this approximation nothing happens until the

energy is raised to the first single particle excited state

of the nucleus, which is an eigenvalue for the particle in

this potential well. There is now a resonance in which the

particle is captured by the well.

Actually, the resonances are not absolutely sharp

because the shape of these resonances is governed by the

Breit-Wigner formula. There would be a very small probability

for capture of the particle by the well at energies that do

not coincide with a resonance. The cross section for a
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reaction of the single particle with this well is small,

except in the vicinity of a resonance, in which case there

is a peak value. In a typical case these peaks are about

15 Mev apart. In fact, however, resonances for nuclear

bombardment by a proton or some other single particle do _

not occur just every 15 Mev or so. There are many more.

This indicates that our model of the nucleus as just a

potential well containing these few single particle states

is an oversimplification. Actually the nucleus has a much

larger number of states of the same spin and parity; the

few states that are formed by the single particle are a

small subset of this number. These other states represent _j

various other modes of excitation of the compound nucleus _

which happen to have the same spins and parities but which _

differ in the internal motion of nucleons in the

nucleus.

We never have this very pure situation.

character of the pure states becomes mixed into these other

states to some extent, and the characteristics of these other

states also become mixed into the single particle state.

The purity of levels is degraded. When we bombard the

nucleus by a par£icle, we find that the properties of a pure

The single particle
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atate mix most strongly with the other states in its

vicinity, and less strongly in the region between the pure

jtates. This is essentially the point of view given by the

"cloudy crystal ball" model of the nucleus. We would

expect that in a region near one of the characteristic

energies the reduced width 7s would be large; othezwise
L

small.

In very light nuclei mixing of states does not occur

to such a degree. In cases where the reduced width is close

to the sum rule limit, the resonance formed is very nearly

the kind of resonance described by an eigenvalue for the

interaction of a single particle with a potential well. In

the pure model, the reduced widths would equal the sum rule

limits at these special states, and be zero in between. In

the other extreme, one may say that on the average 7sL is

a constant, that is, there is no dependence on the position

of characteristic resonance energies. Thus, on the average,

the cross-section for interaction of a single particle with

the nucleus would be independent of energy.

Now we consider the "black nucleus" model; by "black

nucleus" we mean one which will absorb any incident particle

rapidly because it possesses states close at hand in which
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there is a mixture of the wave function for the interaction

of that particle with the nuclear potential well. We also

require that there be a great individual fluctuation in the

values of the reduced width at any given narrow energy interval.

A distribution function for these variations was given by

Porter and Thomas* which appears to work well. Their

distribution function for reduced widths is of the form

N (y) = exp (-y/2 )

(2_y)_

where

The probability of having a small reduced width (including

zero) is much larger than the probability of having a large

reduced width.

If we have a "black" nucleus and nuclear reactions that

do represent a good average , then we can relate the reduced

widths to the average spacing between levels of a given

spin and parity by

!L _ 2x10 -14 cm.
D

*C.F. Porter, R.G. Thomas, Phys. Rev., 10___44,483 (1956)
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If our nuclear reaction involves the properties of any one

nuclear level, then we must be very uncertain as to the

intrinsic nuclear factors that enter into the determination

of the influence of that level on the reaction rate. But

if we are concerned with heavy nuclei so that we may average

over many resonances, then the ratio -t is approximately
D

the value quoted. We call this ratio the nuclear strength

function.

In terms of these quantities, we can write our cross-

section factor S:

Z_Z__ (2J + i) LYa s FbS 2.84x1016
8L _ (2s+l)(2J+l) (E_Er) _ + F_/4 kev

This is usually valid if we are reasonably close to a particular

level whose properties dominate the nuclear cross section.

If the energy being considered is about half-way between two

levels of the same spin and parity, each of which might

influence the nuclear cross-section, interference (constructive

or destructive) takes place between these two resonances. The

cross section might easily be raised or lowered by a factor

of I0 relative to the prediction of the Breit-Wigner formula.

Suppose there are many resonances within the thermonuclear

bombarding region so that we may Use the nonresonant reaction

barns
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formula, but write it so that the cross section factor S

represents an average over resonances.

FD

This is the form for the average cross section. It is

obtained by integrating the Breit-Wigner formula, then

averaging that cross section over the interval between such

resonances.

This is the average cross section for interaction

of a particle in states of a given spin and parity. We

would have similar expressions for each spin and parity of

interest. Let's write

<°2 =
k

Suppose

F << F b _ F .a

This corresponds (for charged particles) to interaction with

the Coulomb barrier at a low energy. Then

- k

where v$/D is the nuclear strength function. This gives a

means of estimating an average cross section (in a case

where we have an average of many resonances in the bombarding
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energy region) if we use some average value of the nuclear

strength function (such as 2x10 -14 cm.).

<o> _ 8__ x 10-I" qP
k

One may obtain an average over (0 v) by remembering that

k _ v, and absorbing this v dependence in the cross section

term. So

<0 V_ . 8_ X i0 -14 qP
m/n

for nonrelativistic values of v.

We expect these expressions to be correct at least to a

general order of magnitude.

Electron Screening:

All of the formulae for thermonuclear reaction rates

that we have considered involve the assumption that we are

dealing with the interaction of bare nuclei. The coulomb

repulsion energy between any two nuclei was then considered

to be the complete repulsion between the positive charges

of the nuclei; i.e. ZIZ s ea/r. This, we observe, is a

valid approximation in the study of thermonuclear reaction

rates in stellar interiors where the atoms are ionized by

the high temperatures known to exist therein, and where the

density is relatively low.
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However, in general in stellar interiors the gas

density is high and the average distances between the

nuclei and the neighboring electrons is small. The

electrostatic potential of the bare nucleus therefore

tends to attract nearby electrons while repelling the

nearby nuclei, thus inducing a spherically symmetric

polarization of the neighboring particles. In a collision

the two nuclei carry this polarized cloud with them, thus

changing the effective interaction energy.

In order to examine the effect of such 'electron

screening' let us consider our formula for the thermonuclear

reaction rate:

r = 4_nln _[
m ,f

0

- /m v2 h
dv v s _(v) exp k, 2kTj

Here m is the reduced mass of the system, 'v' is the relative

velocity of the two nuclei, o(v) is the nuclear cross section

and Iv exp - (mvS/2kT)3 is the Maxwell Boltzmann distribution

factor. If we write E, the relative kinetic energy of the

two nuclei as:

E =i mv s
2

our equation for the thermonuc_ar reaction rate becomes

r = A i dEE½ _(E) E ½ exp - <_T_

0



where
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A: s_n n_, 1L2_kT

Our formula for the reaction rate is a particular form of the

general expression for thermonuclear reaction rates given

by:

_m

r=A jl
0

dE P(E) Gnuc (E) E ½ e -E/kT

In this expression P(E) is the barrier penetration factor,

Gnu c (E) a purely nuclear factor depending upon the details

of the interaction and E ½ e -E/kT is, again, the Maxwell

Boltzmanndistribution factor.

The general expression for the interaction energy may

now be written

U(r) = _Z=eS + U, (r)
r

Here U s (r) is the energy due to the effects of the screening

clouds of the two nuclei.

For most reactions known to occur in stellar interiors

the integrand of the reaction rate, as we have seen, has a

fairly sharp maximum at some energy E max" In all cases of

interest Ema x is known to be large with respect to the

mean thermal energy. Now, with the addition of the screening
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energy, the particles will behave as if they experienced

a relative energy given by U(r). The classical turning

point R c for such a particle occurs for the potential

U(R c) which is equal to E

bombarding energy.

, the maximum value of themax

Emax = Z_ e___ + Us (Rc)
R
c

Let R be the radius of the cloud of charge surrounding the

nucleus or in other words that radius beyond which an

appreciable fraction of the nuclear charge is screened by the

electron cloud. Let us consider that case for which R c is

small compared to the radius of the charged cloud. Now

Us(r) must be a function which is small for r>>R and which

approaches a constant value + U 0 in the limit r<<R. The value

of + U 0 must be of the order of magnitude of Z1_eS/R. Thus,

from this and our equation for Ema x

Re_ _ U____ << 1

R Ema x

From this condition we see that U(r) can be replaced by the

potential at the origin + U o which is independent of both

r and E.

Now rewriting our expression for Ema x we have
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: ÷ Uo
Rc

R c = Z IZ_e s (Ema x _ U0)-i

Therefore, as stated previously, the particle is seen to behave

as if it were bombarding on ordinary coulomb barriers with an

elevated energy (E - U 0) . The penetration factor P(E) and the

nuclear factor Cnuc(E) for energy E without screening are

equal to the correct factors with screening for an energy

(E + U 0). Since U 0 is much smaller than Ema x, but not

necessarily smaller than kT we can write for the thermonuclear

reaction rate:

r = A _ dE P(E) Onuc(E) E ½ e -E/kT e-U0/kT

0

Thus the effect of the screening due to the polarization charge

cloud is to multiply the reaction rate with the screening

neglected by the factor

e-Uo/kT

The arguments employed thus far are primarily those

due to Salpeter (1954)*. Continuing with him, we will

now proceed to calculate the charge distribution and the

*E.E. Salpeter, Austral. J. Phys, _. 353 (1954).
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potential of the screening cloud for the two limiting

cases of 'weak' and 'strong' screening. By weak screening

is meant that the coulomb interaction energy between the

nucleus and the neighboring electrons and nuclei is small

compared to the thermal energy. Strong screening assumes

that the coulomb interaction between _e nucleus Z_ and

neighboring nuclei is strong. In the latter case the

screeningcloud contains electrons only.

Weak Screening:

Let us first consider the case of weak screening. We

will assume here, further, that the electrons are non-degenerate

and that the main constituents of the surrounding gas are atoms

of charge Z, and atomic weight A. We wish to calculate the

interaction energy Us(r) as defined previously. We now assume

that total interaction energy U(r) may be written

U(r) = ZiZseST(r);

(r) = r -I + Ts (r)

_s (r) is the term due to the screening cloud, which we will

consider to be independent of Z I and Zs of the two interacting

particles.

Consider the nUcleus Z_ to be fixed at the origin and

let V(r), _(r) be the electrostatic potential and electric
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charge density, averaged over all particles but ZI. If U s (rJ

is defined as above we then have that V(r) is Zle_ s (r). As

V(r) and _(r) are related by Poisson's equation, we may write

v2[Zle_(r)] = -4w_(r) - 4wZle6 (r)

Now, from statistical mechanics we know that in a region in

which the particles have potential energy U c (r), the particle

density is simply given by the field-free density times the

Boltzmann factor.

_(r) = _.0N_qoZe._exp t- ZIze_Y(r)_ -expL "Z_e_(r)-'"

Thus the Poisson equation for V(r) may be written:

_ e_Vs_s (r) = 4_0N_ z_ Z_ _ _(r>

Now Y s (r) which represents the screening term in the total

interaction potential must be such that it satisfies the

bounding condition imposed on the screening potential. Thus

as r goes to infinity, Ys (r) approaches -r -I and as r approaches

zero, _s (r) approaches a finite limit. If we define the radius

of the charge cloud by the relation

4nPNoeS Z 2 + Z

then the Poisson equation for V(r) or x s (r) becomes:

v_x, (r) =
R 2



with solution

x, (r) = r -I
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(e -r/R- i)

which in the limit of r - o becomes

1
x,(o) = -

In this calculation we have assumed a continuous charge

density _(r), evaluated by the use of the Bo!tzmann factor.

Defining the interparticle distance 'a' by the equation

4_aap N o = 1

we observe that our approximation demands that the electrons

be contained in a volume of such dimensions that _(r) and

Us(r} do not vary appreciably over it; in other words a << R.

From our definition of a, our equation for R _ becomes

R _ <e_ <_ a _

Thus the condition a << R is certainly satisfied for the

case of weak screening for which Z_eS/a << kT.

Thus we may write our final expression for the screening

potential between nuclei Z I and _ as:

U 0 = Z IZee3x, {o)

= _ zlz e

R

Strong Screening:

Strong screening implies that at the radius R of the
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charged cloud, the coulomb repulsion charges between Z_ and z

is large compared to the thermal energy. We will further

assume that this coulomb energy is large with respect to

the ionization potential. The ratio of the ionization

potential of a K shell electron in a hydrogen-like atom to

the mean thermal energy is given by:

= _Z_ e2_ (kT) -I = _,)2 (kT)
Izz _a_z _ 8_m

where a0z is the Bohr radius.

apply are, then:

-i

The conditions we assume to

-i
2 z I z << Zlze____ (kT) >> R

1 m
a a

From the first of these conditions we have that a << a0z

and that

Z1e_ _ / h h2 m -I _ E_

a k 2_a/

Thus the coulomb energy of an electron at a distance 'a'

or greater from the nucleus is small compared to the Fermi

energy, and for an electron at a distance less than 'a'

the coulomb energy is small compared to the corresponding

uncertainty energy. Thus the electron density in the region

of interest differs little from the field free density,

and we can consider it as being uniform.
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The second of our conditions implies that the Coulomb

repulsion of the Z nuclei at distances between a and R

is much greater than the thermal energy. Hence the density

of these nuclei is extremely small compared to the field

free density.

Thus we can consider, in this case, that the nucleus

Z_ is surrounded by electrons with a uniform density up to

some radius R I . Outside of this sphere of charge the

nucleus is effectively screened. The total electrostatic

energy of the nucleus Z i with surrounding electron cloud of

charge - Z l is given by:

3 z_C t

where the first term corresponds to the energy between the

nucleus and the electron cloud, and the second term is the

self-energy of the cloud. If we consider another nucleus

Z_ with corresponding electron cloud of charge -Z s , for

distances between the nuclei which are small with respect

to R l and R_ (in particulars for distances which are of the

order of 'a'), the screening contribution is simply the

total interaction energy for a nucleus (Z I + Z_ ) less the

sum of the analogousenergies for the individual nuclei.
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Thus we have:

R_ _ R I P_

Defining _ as the average number of electrons per a.m.u.

in the gas cloud, or

= Zi xiZi

Ao

l

where x i is the fractional mass abundance of nuclei of

charge Zi and mass A i, we can write:

= h _E, (3_SNo_ 0) _s = (h/a) s
8_2m ' 8_m

where Ev is the fermi energy of the gas defined as the

thermodynamic potential at zero temperature. We can, then,

approximate R I by:

and U0 becomes:

U0 = _

a

9--_- __sl0a [(Z1+_)_s - Z15/s - %_s)]

Pycnonuclear Reactio_:

As we have observed in our discussion of 'strong'

screening, at extremely high densities such that electron

degeneracy is realized, electron shielding cuts off nuclear

potential barriers quite close to the nuclear surface.
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Under such circumstances the classical turning points of low-

energy ions are very insensitive to the bombarding energies.

Nuclear reaction rates thus become rather insensitive to

temperature, but extremely dependent upon density; such nuclear

reactions we will term pycnonuclear reactions.

In our discussion of strong screening, (Salpeter(1954))

we assumed that each of the interacting particles Z I and

Z_ carried with them an electron cloud, in which the electrons

were assumed tobe uniformly distributed. In the present

case, rather, we assume that the electrons are completely free,

and of uniform density. The validity of this approximation

requires that the Fermi level of the electrons must be

comparable to, or greater than, the electrostatic energy of

the electron at the nuclear surface. Thus we write the

modified coulomb potential in the following form (Schatzman

1948; Erma 1957):

U(r) = _1_eSr <i - 2R3 r + _ __>l r 3

where Z I and _ are the positive charges between which the

potential exists; _ _ Zl; and R is the radius of the spherical

volume containing Z_ electrons. Thus we are assuming we have

the charge Zl approaching the charge Z_. The first term is
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the ordinary coulomb potential between two unshielded nuclei;

the second term arises from the uniform sea of electrons of

radius R about the charge Z_, and the third term gives the

effect of the other nuclei which neutralize the total charge.

For simplicity, we shall drop the third term and write

U(r) _ Z1_e__ s _ 3 ZiZse 2

r 2 R

We now consider a particle of bombarding energy E. Its

classical turning point R c, corresponding to the point of

closest approach at which all of its kinetic energy has been

converted into potential energy in the field of the bombarded

ion, may then be defined by:

E = U(Rc) =
R c

Hence:

3Zl_ e__s + E> -IR c = Z_ Z_ eZ_ 2R

Therefore the particle behaves as if it were bombarding an

ordinary coulomb barrier with an elevated energy:

2R

Thus the first effect of shielding is to increase the effective

energy of the bombarding particle, and the classical turning
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point approaches the nucleus.

In estimating the penetration probability for a

barrier U(r) of arbitrary shape, in quantum mechanics, it

is usual to take the expression
R c

P _ exp - 2 _2m_ j'
\_2j

R n

½
(U-E) dr

where m is the reduced mass of the bombarding particle of

energy E; R n is one boundary of the potential which in this

case is the nuclear radius; and R is the other boundary of
c

the potential which in this case corresponds to the classical

turning point. The barrier penetration probability then

becomes

.2m_ ½ Rc __Z_ e sP _ exp - 2 _) I - E*>) dr

R
n

This can be integrated by using the WKB approximation (Bet_1937)

giving

[cos-I x½ x½(l-x)½]P exp - 2

where

x=
ZI _ e s

At this point we may further approximate by taking the

zero kinetic energy limit, E=0. This may be interpreted as
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the limiting case of high densities in which the gas

is also infinitely cold: we are neglecting all temperature

effects. Under these conditions we have:

E* = 3__ZZ_Zo e___
2R

and

x =
2R

In calculating R, one finds

_4
3 kUe J

where N o is Avogadro's number, p is the density and Ue is

the mean molecular weight per electron. Therefore,

R = 0.735xi0-_ Ue S_ _3

P

If we define

y(x) = cos -I x ½ - x ½ (l-x) ½

The barrier penetration probability becomes:

P _ exp - 116.2 y(x)_Z_-_AIA_> ½ _-_p _
-- kA I + _

The wave number k of the incident particle may be

written:

k= my

Now we have the equation for the cross section < o >
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as an average over resonances, supposing that many such

resonances contribute to the optimum thermonuclear region,

given by:

< o > = 4__gP <Y__ Fb>
k N FD

for one spin value. Substituting for k we can obtain an

approximate expression for < sv > as given by:

< sv > _ 4n s

7a s F b

= 0.025 kAIAs ) g FD exp - 116.2 y(x)k--_1 + A_/ < _L_)

In normal thermonuclear reactions the function < av >

depends very strongly on the temperature andnot at all on

the density. From this expression, however, we observe that

at very high densities the situation is reversed; < cv >

depends sensitively on the density but not on the temperature.

Because y(x) does not vary strongly with the density, we may

say in a crude approximation that the pycnonuclear reaction

rate varies as exp - const, p-Y_ in the high density limit.

Effectively it is the quantum mechanical zero point energy

which allows the penetration of the much reduced coulomb

barriers, in such cases of high densities and perhaps low

temperatures.

The effective density limit, for protons, occurs at
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approximately 104 - l0 s gm/cms. Most of the helium pycnonuclear

reactions will take place at approximately l0 s - 109 gm/cms .

These are not radically different from the density ranges that

one encounters in white dwarfs.

Temperature Sensitivity:

In many cases it is useful to be able to speak of the

temperature sensitivity of a thermonuclear reaction. Let us

write the reaction rate p as proportional to some constant

times T n .

= T nP P0

Then the power n may be obtained from the relation

d(In p)
n =

d(in T)

Thus, for non-resonant reactions it follows that:

n= 1 (_-2)
3

For resonant reactions the power takes the form:

n

0.0116 3
E r - _

T 6 2

For thermonuclear reactio_with reasonable cross sections,

the reaction rates become interesting for n _ 20. For

instance n -- 18 for the reactions in the carbon cycle for

temperatures in the range of interest. For the proton-proton
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chain, n _ 4. This is due to the fact that the proton-proton

reaction is a very special case, taking place at temperatures

far above those for which one might expect reactions which

involve a pair of single charges. Certain resonant reactions

exist for which n is extremely high as, for instance, the

triple alpha reactions for which n _ 35 under conditions of

interest.
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12. Hydrogen Thermonuclear Reactions

We shall now consider in detail one class of reactions

which provides stellar energy for main sequence stars, that is

the hydrogen thermonuclear reaction series. In effect this

reaction series converts four hydrogen nuclei into one helium

nucleus with an accompanying energy release of 26.730 Mev.

The paths by which this transformation may take place are

varied and may involve intermediate elements such as carbon,

oxyge_ etc. The range of temperatures at which the reactions

take place vaziesfrom ten to thirty million degrees depending

on the mass of the star and its initial composition. Stars

on the lower end of the main sequence (yellow to red spectral

classes) generally burn hydrogen by a combination of element

chains consisting of rather light elements, as heavy as boron

or lighter. We shall refer to these chains as the proton-

proton series (PP). Upper main sequence stars do the con-

version using heavier elements from carbon to oxygen. This

is the CNO cycle (or hi-cycle). At very high temperatures

of about 50 million degrees isotopes of sodium, neon and

magnesium also undergo transformation. These reactions will

be discussed at the end of this section.
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When the hydrogen in the core has been converted to

helium and the central temperatures and pressures are sti±l

not high enough to initiate helium burning, the region of

hydrogen destruction consists of a thin shell which progresses

to _- ----L_,_ outer layer of the star . It is at this point that th_

star leaves the main sequence to become a red giant. We shall

leave the star here for the time being and defer discussion

of the helium burning stages until a later section.

For the moment let us return to the pre-hydrogen burn-

ing stage where deuterium destruction is taking place. When

the temperature in the contraction stage reaches about

8000 <_Kwe start to burn deuterium. At this point the amount

of energy provided by deuterium burning may be of the order

of the energy from gravitational contraction.

The main deuterium burnlng reactions are listed below

along with some reactions involving heavier elements which

are destroyed as contractlon proceeds. Some of these will

then be discussed in detaxl.

D2 (p,¥) He3

De (d, n) He3

De (d,p) Hs
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(at temperatures of about 3x10 s °K)

( ,' ,, ,, ,, 4x10 6 OK)

Beryllium:

Be 9 (p,d)Be 8 (2_1_
D 2 (p, Y ) He 3

Be 9 (p, a )Li s

Li s (p,_) He _

(at temperatures of about 5x10 6 °K)

Boron: _0 (p,_)Be 7 _

Be 7 (e, _) Li 7

Li 7 (p, e )He 4

B 11 (p,e)Be 8 (2e)_

(at temperatures of about 8x10 6 °K)

The De(p,y)He s reaction is a non-resonant reaction which

will be discussed in much more detail immediately following

this. The second two reactions compete with one another and

the first of the two produces neutrons which will be of some

i_pbrtance as will be discussed later.

After the exhaustion of the deuterium, the star will

continue to contract and its central temperature will continue

to rise. In rapid succession the elements lithium, beryllium

and boron will be destroyed. The abundances of these elements

are so very small that the energy produced by their destruction
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is negligible compared to the energy released by gravitational

contraction. The final temperatures reached will be on the

order of 8x10 s °K or more, after which the star settles down

on the main sequence and hydrogen burning commences. The

times associated with the above reactions are on the order

of 104 to l0 s years.

The D2(p,y)He s Reaction

We are now going to consider the theory of the proton

capture by H 2 . This is a non-resonant reaction• There are

no other resonances near the bombarding energy at which we

form the compound He 3 nucleus•

protons in the continuum states•

We shall consider only p-wave*

The deuteron enters into the

calculation only to the extent that it provides a square

well potential for the odd proton in both continuum and bound

states.

We may picture the situation as in the diagram.

V(r!
I

a _r

-5.49 Mev ,
i
!

I

I
I

,_ - 35 Mev. *See page 124 for reason L=I.
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Here we observe we have a: nuclear potential well surmounted

by a repulsive coulomb barrier. The bottom of this barrier

which corresponds to that for the deuteron is of the order

of - 35 Mev. There is a state within the well corresponding

to the ground state of_ Hea. for which V = - 5.49 Mev. We

are interested in the probability that as the proton penetrates

the barrier we shall have a transition involving the emission

of y-rays. The method for calculating this probability

consists of writing the expressions for the wave functions

of both the ground state of the He 3 nucleus and the incident

proton. Using these expressions to determine the nuclear matrix

elements for emission of electromagnetic radiation, we shall

then observe that we get many more transitions outside the

nuclear potential well than we do inside.

In order to proceed with this general analysis, we

shall first write the Schroedinger equation for a proton in

the'center of mass system:

v_ _ + 2__

where (corresponding to our diagram)

V= -V 0 for

= zlz e for
r

(E-V) _ = 0

r < a

r > a
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For the ground state of the He3 atom we then have E=-e=-5.49 Mev,

which corresponds to the binding energy of the last proton in

He3 . Here the reduced mass U is given by

= 2 _ = 1.115xl0-_4gm
3

and a is the nuclear radius which we find from the coulomb

energy difference to be

a = 2.26x10-13cm.

The radial Schroedinger equation may be written as

(R6(r) = NG6(r)/r)

# f

G6 (r) + _Ss1.2__ (E-V(r)) -

where V(r) is defined as before.

He s we have _ = 0, whence

R

G o '(r) +

_2
(E-V(r))

G_(r) = 02_ r 2

For the bound state of

G o (r) = 0

G 0'' (x) + G O (x) = 0

Thus the radial solutions for the region r < a may be

whence

Consider the region r < a. Here ,we have E=-¢,V=-V 0 .

We can convert the equation above to a dimensionless form

by the substitution

2__ (Vo - c) = y_ ; x = yr
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R0 (r) = Ny G__(x) = A sin x

x x

Let us consider, now, the region r > a. Here we have

V = e2/r and E = -e.

G O (r) - 2__ /e + e2_ G0(r)= 0

M5_ \ rJ

Introducing the parameters

8 = _ = 4.2xi0 -12 cm-l

= e2 ,_-- = 0.055

we can convert our equation to a dimensionless form by the

substitution p = 8r, yielding

Go (P) - El + p2__J G0(P) = 0

To write down the solutions for G O (p) let us consider briefly

the more general form of this equation, for non-zero 6.

t p p_ J

The exact solution of this equation in integral form is

given by

G (P) = W(-9,6 + 1 , 2P)
% 2

= exp(-p-_ in 2p)

F(I + Z + 9) _ t%+_ e-t <i + _> _-_

dt



-123 -

Here W(-_, 6+½, 2p) is the general Whittaker function. For

the case of 6 = 0, using the WKB approximation one obtains

G0(P) = W(-_, ½, 2p)_

where

=

exp - _ E{(p) + ½ in }(p)] dp

/ 1 + 2__ for _ = 0 .

p

Thus the radial wave functions for the region r > a are

given by

R o (r) = N_ Gn (P) = B___W (p)

P P

Matching logarithmic derivatives at r = a yields the

condition:

x cot x
= - p E_(p) + 1 ] Ir = aIr = a _(p)

= - 1.45

Thus, for a = 2.26x10-13cm and using V o given by

V o = c + ___ = 34 Sev

2p

we find

x 0 = ya = 2.16

Now, to determine the constants A and B we recall

the two conditions: (i) the solutions for r < a and r > a

must have equal amplitudes at the nuclear surface and (ii)

the ground state wave-function must be normalized to unity.
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The first of these conditions may be written

ya Ba

yielding A = 0.942B. From the second condition, recalling

that the angular part of the wave-function is represented

by normalized spherical harmonics yields

I sin ¥r e 1 8r 'yr I red(_) + aBe "_ W(_r)le r_d(_)
1

Integrating these integrals numerically one finds Bl=0.473x10 a°

Now, to continue we must write down the continuum wave

functions for the p-wave proton. The reason for the choice

of 6 = 1 here is as follows. The transition to the ground

state which we are going to consider here is an electric

dipole transition. From the selection rules for such transi-

tions one finds that there must be a change of one unit in

the orbital angular momentum of the particle that undergoes

the radiative process. Thus to end up with a S-wave proton

in the ground state of helium we must have a p-wave proton

bombarding the nucleus.

To write down the continuum wave functions we must again

consider the radial solutions to the Schroedinger equation.

1 d /redR_ $2___ (E-V(r)) - _(_ + i) _ R_(r) = 0
re dr _---_r _ + kh a r2 /



-125 -

For the region r < a we have again V(r) = -V 0,

subs ti tuting

k2 = 2__ (E+V o) ; p = kr

we have

d2R_(p) + 2

dP _ p
6_ + I)) R_(p) = 0

dR_ + 1 - l,
dp pa

The solutions of this equation are the spherical Bessel

functions j_(P). Thus for p-wave protons we may write:

R_(r) = /sin kr cos kr
< _r) E - kr )

Now, for the region r > a we have V(r) = e2/r, _ = i.

Our radial equation then becomes

1 d _r _ dR_ + _)_rs dr _---dr / _ (E- r--_2) R_(r) = 0

Writing: R_(r) = N1u _
r

P = 8r

we have finally

dSu_(p) + / 1 -
dp _ _ P

_ 2---)u1(P) =p_

0

The solutions to this equation are linear combinations of
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regular and irregular coulomb functions for 6 = i.

u I (p) = (F I (0) cos 61+G I (p) sin 61), r> a

Here F_ (P) is the regular solution defined by insisting that

F I (0) = 0 and that its asymptotic oscillations have unit

amplitude. The other independent solution G I (P) is chosen

to be asymptotically out of phase by _/2. Here 61 is the

nuclear phase shift.

If we now also write for r < a

R_ (r) = N___vl (r)

r

we will have

v_ (r) = A' _sin kr - cos kr] , r < at _r

We can now determine the nuclear phase shift _ by matching

logarithmic derivatives at r = a,

t I

tan 6_ = [IZI -------_F_--_vl
? R

G s v_ - G_v I

where the differentiation is with respect to kr. Now as the

coulomb functions are normalized to unit particle density at

infinity one can obtain A' at r = a.

The phase shift 61 is due to the presence of the nucleus.

If a pure coulomb field were to exist all the way to the

origin, the only solution we would have for the incoming wave
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would be the regdlar solution which vanishes at the origin.

For low energies, then, one would expect the phase shifts to

be small (61 _ 0) and we can use only the regular coulomb

function. Physically this says that for low bombarding

energies the probability of the particles penetrating the

coulomb barrier is small; effectively it cannot sense the

presence of the nucleus through the coulomb barrier.

We wish, at this point, to calculate the capture cross

section for this reaction. In general the capture cross

section is defined by

oc = Ho. of y-rays emitted per tarqet nucleus per second

No. of incident particles per cm 2 per sec.

Transition Probability

Incident Flux

The incident flux is simply the density of particles times the

velocity of the particles. Since the Coulomb wave functions

are normalized to unit particle density at infinity the

incident flux is just v particles/ cm 2 sec.

Now for electric multipole emission the general formula

for the capture cross section is given by:

o(E6) = 8_[_tl) i___ /w_'h2_+I _m=-6 IQ6m 12

6[ (26+I) '.: ]2 _v \cJ

Here Q6m is the electric multipole moment defined by



0%m = e T f

-128-

(r_Y_ m* )Y idT

= ea % [_ Rf*/rA¢Ri r_dr '"_ J m* m*_J
j_j_s Y_ :_j_s msin @ d@dlJ

The important consideration here concerns the radial integrand.

Here Rf* is the radial wave function corresponding to the

final state which, in our case, is the bound state for the

last proton in the well representing the He s compound nucleus;

R i is the radial wave function for the incident particle

which is a combination of the Coulomb wave functions. We

take % = 1 here corresponding to electric dipole radiation.

The ground state wave function in question has an

oscillatory character within the nuclear potential well and

dies away rapidly on the exterior of the well. The incoming

wave being represented mostly by the regular Coulomb wave

function F l decreases very rapidly toward the nucleus. The

figure on the following page shows the radial integrand

plotted for two energies (Lal, Thesis 1961). Here we see

that the integrand peaks at several nuclear radii. The

matrix element, then, arises almost entirely from transitions

taking place outside the nuclear potential well. The actual

contribution to the integrand from inside the well, not
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plotted by Lal, would be extremely small: comparable to

the error made in neglecting the nuclear phase shift of the

incoming particle.

This result is typical of such non-resonant reactions.

When bombarding such a nucleus at an energy far away from any

resonances, one finds generally this direct capture process

which will have its amplitude peaked at some distance from

the nuclear potential well. Due to this observed behavior

we can see that the actual shape of the nuclear potential

well is not particularly important. One would then expect

that the absolute cross section calculated from this

procedure would at least be correct as to order of magnitude.

For this reaction the experimental values (Griffiths, Lal,

and Scarfe) give

S(O) = 2.5 x 10 -4 key barns

<dS/dE> = 0.079 x 10 -4 barns

with an uncertainty of the order of 5_.

We shall now discuss some of the consequences of the

deuterium burning stage along with a re-examination of

some of the other deuterium reactions.

Neutron Production During Deuterium Burning

Neutron production during deuterium burning was
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initially discussed by Salpeter (Physical Review, 9__7, 1237,

(1955) ). We recall the two reactions

D_d, n) He 3

and E_(d, p)

In the limit of low bombarding energy, these two reactions

have equal cross-sections. Salpeter finds for the cross-

section factor for the combined reactions

S0 = (2.1 + 0.5) x 102 key barns.

From this we may find the ratio of the number of neutrons

produced relative to the number of protons absorbed in

the D 2 (p,y)He s reaction.

Pn x<___ -5 4p_ = I. 24 x l0 s exp <_>

Deuterium burning takes place in the sun at T e -- 0.8, and

under those circumstances,

Pn/Pp = 0.iii

There is an error in this figure of the order of 50_, most

of which is due to the error in the proton capture reaction.

Assuming that the primitive material forming the sun has

the same ratio by number of deuterons to protons as does

the earth,

1.5 x 10 -4nd/n p --
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we find x by multiplying the number densities by the relative

masses, so

×d
--= 3 x 10 -4 .
X
P

As deuterium burning goes to completion, the ratio of Xd/:_:P

will decrease, hence we divide by a factor of 2 to get the

total yield of neutrons over the exhaustion of the deuterium.

Thus

Pn

- 0.046

2P n + Pp

averaged over the deuterium burning process.

These neutrons are produced with energies of the order

of 2.5 Mev and, for the most part, they collide with the

abundant hydrogen. Besides being by far the most abundant

constituent of the medium, hydrogen has a rather large

scattering cross section for neutrons. Consequently, the

medium is an extremely efficient neutron moderator (also,

the masses of hydrogen atoms and neutrons are very nearly equal,

so on the average half of the neutron energy is lost in

each collision). The collisions of the neutrons with the

hydrogen atoms or protons will rapidly slow the neutrons

until they are in thermal equilibrium with their surroundings.

Once this occurs, the neutrons just wander about, with
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their energies varying within the rather diffuse bounds

allowed by the Maxwell energy distribution, until they are

captured. To discover what captures them we are interested

in relative capture cross sections multiplied by the relative

abundances _ _ _df_e_,___ . ,,,_I_ present. ....Tfh_n__==_.._

that we need consider only two nuclei, the dominant neutron-

capturing nuclei, which are hydrogen and He 3 . The problem

is complicated by the fact that the abundance of He s varies

because He a is one of the products of the deuteron destruction

reaction.

Both hydrogen and He a have neutron capture cross-

sections which vary as I/v , where v is the neutron velocity.

Thus it is a simple matter to calculate the effective

capture cross-section for any given temperature. One takes

the cross section measured in the laboratory (at _0 of an

electron volt) and uses the i/v dependence to calculate the

capture cross section at the temperature of interest.

The relative amounts of He 3 and He 4 cannot be deter-

mined in any but exceedingly abnormal stars in which the

amount of He 3 is greatly increased. The abundance of helium

in the sun cannot be determined at all because of the fact

that it is not ionized and all the fundamental lines are
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in the far ultraviolet. Eventually its abundance in the sun

will be measured from space, but as yet we have no direct

measurement. Judging from indirect evidence, the abundance

of helium by number is about 15% relative to hydrogen.

Some of this indirect evidence is the measured helium-

hydrogen ratios in much hotter stars where some helium

lines are detectable; the rest comes from the construction

of solar models in which some of the properties depend on

the ratio of helium to hydrogen.

For Ts = 0.8 (corresponding to 87.6 electron volts)

the average cross section for hydrogen is 0.0056 barns.

For He3, the cross section is 91 barns. Note that the

capture of neutrons by hydrogen (the HI(n,Y)D 2 reaction)

regenerates deuteri_n, which is fed back to the start of

the deuterium-burning process. Because few neutrons are

produced, this correction is small and will be neglected.

The He3 neutron capture reaction forms tritium: HeS(n,p) H_.

In general, exothermic particle reactions have much greater

cross sections than simple capture reactions: this reaction

is typical of such cases. The tritium formed has a short

half life (12.26 years) compared to the time in which

deuterium burning is expected to occur in the sun (--300,000
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years). The tritium decays back to He_ with the emission of

electrons and anti-neutrinos, so the neutron capture in He_

does not effectively diminish the amount of Hes present.

Now, we wish to know the initial relative abundance of

He_ . The natural abundance of He3 is difficult to determine,

however, because helium is lost from the earth's atmosphere

in a time short compared to a billion years. Occasionally,

from some meteorites, apparently primordial gases are

extracted - gases which have been frozen in these meteorites

for the last 4.5 billion years. This is particularly

significant an dlscussion of cosmochronology because some

of the isotope compositions, particularly xenon, differ in

these meteorltes from that in the earth's atmosphere.

However, for the Hes to He4 ratio, these meteorites give

a remarkably unlform value of about 3 x 10-9 .

For the sun, we take

He_
---- = 0.156

H

and therefore

H____e= 4.7 x I0 -_
H

If we assume that this is characteristic of solar

matter, then we may calculate the neutron capture effective-

ness of He 3 w_th respect to hydrogen:
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4.7 x 10-5 x 91 = 0.76.

0.0056

The initial H_ present in the sun in nearly as important as

hydrogen for absorbing neutrons.

Because two deuterons are destroyed to form only one

He a nucleus in some cases, the ratio of deuterons burned

to He s produced is 0.954. If we assume that the primitive

ratio of deuterium to hydrogen in the solar nebula is

equal to the terrestrial ratio, we may use

D
H-T = 1.5 x 10 -9 .

NOW,

1.5 x 10-4(0.954) 91 - 2.32

0.0056

so the additional He a formed becomes more than twice as

effective as hydrogen for capturing neutrons.

of neutrons produced per H l present is

0.046 (1.5 x 10 -4 ) = 6.9 x i0 -_

Now we wish to calculate the change in abundance for any

other nucleus with average cross section <_>:

f = 6.9 x iO -_ <_>r I dx
0.0056 -01 + 0.76 + 2.32x

= 4.5 x 10 -4 <a>

For typical heavy nuclei with odd mass numbers the

The number



-136-

average cross section may be of the order of I0 to i00 barns

(averaged over many resonances). Thus a typical heavy

nucleus would be depleted from about 0.5 to 5%. This may

have observable effects on isotopic composition of heavy

elements in the sun as compared to the earth and meteorites.

I believe that part of the differences of terrestrial and

meteoric xenon is attributable to this.

The next set of reactions to be considered are the

proton-proton chains. Again, these represent the main

mode of energy production in lower main sequence stars.

Proton-Proton Chains

In a star initially composed of pure hydrogen there

is a simple sequence of reactions that leads to the

production of He 4 in the interior. The central temperatures

at which these reactions occur vary from about 8 x l0 s °K

in a faint red dwarf star to about 15 x 106 °K in the sun.

When less massive stars reach the main sequence they stay

at that particular position on H-R a very long time while

these processes take place.

The reactions are given below in their entirety where

the various designations given the reactions will be

discussed in turn.
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Proton-Proton Chains

PP I

PP II

PP III

H I (p, 8+ v) D 2
D_ (p, Y) He _

He 3 (He _ ,2p) He _ >
Be _ (e-,_)Li 7

Li 7 (p, _ )He _

Be v (p, Y) B _
B8(8 ÷ _) Bee* (2_)

We start out with the basic proton-proton reaction which

is a collision of two protons. Most of the time the protons

are re-emitted, but once in a long while a beta-decay takes

place which results in the formation of a deuteron. (This

reaction will be examined in detail later on.) This

process is extremely slow because a beta transformation

must take place during the collision which is a very

improbable process. The reaction does not proceed at an

appreciable rate until the temperature and density become

high enough so that Coulomb barrier penetration can take

place very easily. Though this reaction will probably

a
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never be observed under laboratory conditions, the theoretical

calculation of the reaction rates is well defined and is

presumed to be correct.

The deuteron produced from the p-p reaction then

captures a proton with the subsequent emission of a y-ray

to form HeS The abundance of He s then builds up until it

reaches a concentration high enough for an appreciable rate

of Hea-He s reactions to take place. This results in the

emission of two protons and leaves an alpha particle. Thus

He 4 is formed and the proton supply is replenished. This

whole reaction chain is referred to as the PP I Chain.

Once the stellar interior contains an appreciable

amount of He 4 there is an alternate path by which He s can

be destroyed. This is the capture of an _-particle by He 3

resulting in Be 7. The Be 7 then undergoes a beta decay to

Li v . The Li v will react rather quickly with a proton to

form two m-particles. This is the PP II Chain.

An alternate route in the PP II Chain which leads to

PP III may take place if the Be v formed captures a proton

yielding B8 . The B s has a half life of 0.78 seconds for

beta decay to Be s which then decays into two e-particles
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An interesting point is that the end point of the B8 beta

decay is about 14 Mev, so that on the average about 7 Mev

per neutrino is lost to the star since the neutrinos stream

out from the interior unhindered by intervening material.

This process significantly reduces the _ficiency of the

hydrogen to helium conversion as a means of generating

energy in the interior to keep the center of the star heated.

One of the things that has been of great interest in the last

five years has been to determine the relative importance of

these various reactions in the stellar interior.

We shall now discuss the details of the p-p to D _

reaction. As indicated before this is th___eethermonuclear

reaction which has the least probability of being observed

in the laboratory because the cross section is so small.

The approach used here will follow that of Bethe and

Critchfield I, with corrections by Salpeter 2, and Frieman

and Motz 3 .

To talk about the HI(p,8+v)D 2 reaction we must first

discuss the process of beta-decay, since we eventually have

a proton decaying into a neutron, positron and neutrino,

IH.A. Bethe, C.L. Critchfield, Phys. Rev. 5__55,434

2E.E. Salpeter, Phys. Rev. 8__8, 547

3E. Frieman, L. Motz, Phys. Rev. 8__33,202
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p_ n + 8+ + u.

The usual rules of conservation of energy, and linear and

angular momenta including spin still apply. Since this is a

weak interaction, parity is in general not conserved. The

electron (positron) and _ntineutrino (neutrino) can have

their spins parallel or antiparallel. If the proton is

contained in a nucleus then the total spin of the nucleus can

change by zero or one unit of spin by arranging the spins of

the positron-neutrino pair in either antiparallel or parallel

fashion. If the decay does not change the spin, i.e., if

_J = 0,we then have the so-called Fermi selection rules. If

there is a spin change of 0 _ i, but not zero-to-zero, we then

have the Gamow-Teller selection rules. There are also the

so-called forbidden transitions in which the spin change is

greater than unity. This requires that the positron-neutrino

system emitted have some net angular momentum with respect

to the nucleus, which in effect means that the pair is emitted

some distance from the nucleus. Because the wave functions

for the nucleus decrease rapidly with distance from the nucleus

we expect that these transitions are relatively improbable.

We are interested in the case of a two (or di-)proton
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system decaying to D_ . If each of the protons have come

together with zero angular momentum (s-wave), we may then

think of the diproton as a nucleus in its ground state. If

this is the case, the spins of the two protons must be anti-

parallel in order that the Pauli exclusion principle not be

violated. The net spin of the diproton is then zero. For the

deuteron, however, we do not have two identical particles so

that the neutron and proton may have parallel (Triplet, S = 1

state) or antiparallel (Singlet, S = 0 state) spins. It

turns out that the triplet state forms the deuteron ground

state. The singlet state is so ill-defined that no character-

istic energy is ascribed to it. The transitional beta-decay

from the diproton to D 2 then involves a spin change of one

and obeys the Gamow-Teller selection rules. What we will

have to do is form the wave function for the diproton (wave

function for two protons in collision) and the wave function

for the deuteron, and compute the probability that the trans-

format_n can take place during the collision.

In the Fermi theory of beta-decay, the transition

probability for decay is given by

T = g f(W)IGI _ IMspl _

where g is the coupling constant
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g = (6.3 + 0.3) x 10 -4 sec-",

W is the endpoint energy of the emitted positron (in

units of mc _) where for zero relative energy of collision,

W o = 1.827 <i _ .002)

.=t,.,_,,,±._- the Fermi" _u**_**=---_+_^- which gives essentially +h_._

probability for emitting the electron or positron into the

available phase space. It is given by

f(W) = (W_-I) ½ _ 2W_ 2____

k30. 20 15/

+ ! W log rw + (we - l) ½]

The relative velocities of collision we will be concerned

with are of the order

_4_.e e k T_ _
v't.; J cm/sec, which corresponds

to energles in the key region. ,M Is the proton massj These

energies are small in comparison to W o. This leads to an

approximate value of fiW) given by 2

[f(W) = 0.145 1 + o.os4 iTS) (l z o.o3),,

IMspl _ is the spin part of the overall matrix element

for the transition. This takes care of the summation over

the various spin states involved and of the fact that either

one of the protons can be the one that gets changed into the

neutron. The numerical value of IMspl turns out to be 3/2.
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The factor G is the overlap integral between the final

and initial states, i.e.,

G = J'_ _i d_-

The cross section for the reaction is then given by

qf(W)

o : V

where _ is the wave function for two protons normalized to
P

unit density, and _d is the deuteron ground state wave

function.

We shall follow Bethe and Critchfield and assume a

square well potential model for the deuteron. Though

seemingly crude, this gives good results since it turns

out that the major contribution to the matrix elements come

from regions away from the well. That is, the shape of the

well itself is not very important. In such a case let the

well radius be r o and its depth be V o. Then,

_d = <_ exp [-(x-x O) 3, for r > r O

<B_ sin _x / sin _x O, for r < ro

where x = r/b, x O = ro/b

b=_

= l. %

B = (2nb)-% (l+xo)-½ (i+_-_)-½.
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M is the proton mass and e is the binding energy of the

deuteron.

If we insist on continuity in the logarithmic derivatives

we find a relation between V o and r o, viz.,

U cot ux^ = -i.

The proton wave function at large distances is given by,

where p = kr, k = M__vvand
2n

@ is a phase angle.

= sin (p - {) ,

P p

yp _ A (MD) ½ r = _ r < r O- r sin _ r '

where D is the depth of the square potential well between

two protons. The width is assumed to be the same as that

for the deuteron, namely r O. The constant A is a normalization

factor.

Outside the well the wave function is a function of the

usual Coulomb wave functions given by,

_p =(ei_osK)(F + G tan K)/kr, r > ro

where K is a phase shift. (This phase shift is what makes

_p different from the usual Coulomb wave function solution

At the boundary r = r o we have

Inside the nuclear potential well
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tan K - F2 6

I-FG6

where

6 = <d log F _ d loq
dP dr .

ro

For low proton energies F(r o) is small which implies

K is small also. (For example, for a relative energy of

12.5 key., K = 0.0017). Thus eiKcos K _ i. In such a case

we can express the normalization factor as

A
F(ro) + G(ro) tan K

k sin (MD)½ro/_

For L = 0 protons (s-wave), F = CP#, and G

where

= C-18,

C = (2_) ½ e -_ , and _ = es/_v.

and ® are slowly varying functions of r which approach

unity as r approaches zero. Thus,

tan K = C_kro l,

where,

=

and

= <d log F/w_ = <i + rdlog p J

d log { d log %_

dr -r dr

The proton wave functions are then,

Yp = C[_(r) + l(ro/r) ®(r) ], r > r O
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where,

sin _r/b

Yp = C rOr [ { (rO) + 18(r) ] sin Vro/b ' r < r O,

= (MD) ½ b/_ = (D/e)½.

One notlces that the main variation with energy of

_ is the coefficient C which includes the Gamow barrier
P

penetration probability. The function _ represents the

effect of the potential well on the wave functions, and

in essence this means the effect of any resonance that is

associated with the diproton system itself.

We shall now use the Bessel-Clifford expansions (as

we did in previous sections) to re-express the functions

and _ :

-½
(y_' = y 11 (2y ½) = 1 + _ +

1!2! 2!3! 3!4!

®(y) = -2_ K I (2y ½) = 1 + y(log y + 2y - i)

2 ! {s+l) ! +
s=l t=l

with y = 2r/a0 a = 2_S/Me _ = 5.75 x l0 -l_ cm.

(Y = 0.577 .... Euler_s constant).

For a value of _ of unity these expansions give the

values of # and @ to within 1%.

The cross section for the reaction now reads,
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_= qf(W) C s (4nb s'/s A s,
v 2_b

where

i 1

(l+x o)_ (i+_-2)_

A 1 =

A2 --

A = A_ + As + A3,

x
X. [ _ (r o )+l® (rn)]

sin tax o + sin 'Ox o J_ sin lax sin _0 x dx,
o

,[ x dx exp [-(x-x o)'ll (2bx/a))
Xo

A s = _ dx exp [-(x-x O)]®(2bx/a_

Xo

Before we evaluate these explicitly, A is essentially the

matrix element for the transition probability. This is split

up into a term (A I) which arises from inside the potential

well, and two terms A s , A s which arise from regions outside

the well. As will be shown the latter two terms are the dominant

ones.

A 1 =

A s =

Finally, the A 's become,

1

_____X_[_(rn)+ k@(rn)] [sin (_-9)x o _ sin (U+_)x_]
sin _ x o sin 9 x 0 [ (_-_)x o (_+_)x o

l+x 0 + (2b/a)(l+xo_ XoS)+½ (2b/a) (l+xo+ ½ XoS+ 1 Xoa)+...,

A s = kxo[l+(2b/a)[log (2b/a) +2y-I]A s

-[(2b/a) s _ (l+xo+_ xo ) + _ _-2_.3 1 s 1

00

+ 7 (2b/a)3f (Xo)/(s-i)'.
s=l s '
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fs(X0) = (s,) -I exp [-(x-x O)]x s log x dx,

xo

fl (Xo) = l+(l+x0) log x 0 - Ei(-xo)exp (Xo),

fs (Xo) 3 1 ½= 2 + _ x° +(l+x°+ x°2)l°g x° - Ei(-x°)exp(x°)'

/ 1 +1
f3 ¢Xo) =¢_Ii/76) + (5/6)X.0+' L"_ X°2+(l+xo'l'_" x°e 6 x°O) log X o

Zf r o = eS/mc s ,

" r 0 = eS/2mc s ,

-Ei(-x 0) exp (x 0).

A 2 = 8.08

A s = 5.93

As mentioned before, Bethe and Critchfield find that A s

and A3 are considerably larger than A I for reasonable assumptions

of well depth/etc. Thus the shape of the well turns out to be

a relatively minor factor in the cross section.

Salpeter has re-evaluated the matrix element using

the theory of effective range and various potential shapes.

For _= (zero bombarding energy) he finds:

Yukawa we i i ;

Exponential well;

Square well;

As = 7.11

As = 7.00

A s = 6.92

Frieman and Motz used explicit wave functions and found

A s = 6.79. (Salpeter regards this calculation as the most

accurate.)

For a reasonable value of _ _ 1.5, Salpeter adopts

A_ = 6.82 (! 0.05).
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We finally obtain a value for the cross section factor

S(0) of,

with

S(0) = (3.36 + 0.4)x10 -22 kev. barns,

-- ---_ds/dE2 = 2.7xi0 -24 barns. 4 (We note that the value

of S(0) is presumed known to within 12°/o.)

The Remaininq Reactions

D_(p,y)He3; This reaction has been discussed in

the context of what happens to the deuterium during the contrac-

tion phase of a star when the interior temperature (about

800 ,000°C) first rises enough to be able to destroy the

deuterium and where the lifetime of the deuterium may be many

thousands of years. In the stellar interior, when the proton-

proton chain is going, the proton-proton reaction is extremely

slow because the relatively few p-p collisions in

the high energy tail of the Maxwellian distribution are unable

to overcome the great reluctance of the system to beta-decay.

Consequently, under typical conditions in the center of a main

sequence star, we find that the temperature dependence of the

p-p reaction is reduced to about the order of the fourth power

4Hubert Reeves, Stellar Energy Sources, (to be published)
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of the temperature, in contrast to more usual reactions which

tend to vary as about the twentieth power of the temperature.

The destruction of deuterons is so drastically faster than

the p-p reaction that they will disappear on a time scale of the

order of seconds once the deuterium has been formed. This means

that we can expect Ds to H_ number density ratios on the order of

10-17 in stellar interiors.

He 3 (He 3 ,2p)He 4 : This is a non-resonant exothermic

particle emission reaction and therefore goes very readily.

The S(0) value is poorly known but is believed to lie between,

1.2x103 < S(0) _ 2.4xi03 kev.-barns.

The slope of the S factor with energy is not known at all.

He a (_,y) Be T: This is a non-resonant reaction

(Johnson-Holmgren, 1959) with a large cross section corresponding

to a direct capture process. It forms the first link in the

PP II chain and competes with the He 3 (He 3,2p) He 4 reaction. The

cross section parameters are,

S(0) = 0.47+0.07 kev.-barns,

<tin/dE>=-2.8 x I0 -4 barns.

Though the cross section is considerably smaller than for

the He s (He s , 2p)He 4 reaction of the PP I chain, the amount of

He 4 present as compared to He s tends to make this an important
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reaction under certain conditions of temperature and pressure

Li 7 (p,_)He4: This reaction follows the destructlon of Be 7

by electron capture. It is one hundred times faster than the

"competing" reaction Li 7 (p,y)Be 8, which in turn is of little

interest anyhow since the Be 8 splits into two m-particles. For

the reaction in question,

S(0) = i00 + 25 key-barns.

_____: This is a non-resonant reaction which starts

the PP III chain, with

S(0) = 0.020 _ 0.010 kev-barns,

(Kavanagh, 1959). This reaction is unimportant at temperatures

below 20 x 108 OK. Above these temperatures it represents an

interesting reaction in that about one quarter of the energy

released is lost by neutrino emission when the B s beta-decays.

BeT(e-,v)LiT: This is the reaction that leads into the

PP II chain by capturing an electron. In the laboratory the

captured electron is a K electron. In the stellar interior,

however, the atom is ionized and a free electron must be

captured

We may estimate the rate for this free-electron capture

by multiplying the rate for K-capture by the ratio of the

probabilities for finding free and K-electrons in the nucleus.
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The probability of finding a K electron inside the nucleus is

i _Zme_h
rl_eladV : _ < _- _ Vn,

where _e is the K electron wave function and the integral is

over the nuclear volume Vn. If there were no Coulomb fields,

and if the average volume of space associated with one electron

is V, the probability of finding the electron in the nucleus is

Vn/V. In the presence of a Coulomb field the electrons become

concentrated towards the nucleus and we find

Vn 2w_

rl el dv = --
free V 1 - exp (-2_) '

where

Ze _-

_v

v = velocity of free electron at infinity.

If we set Ue = 1 for hydrogen and equal to 2 for everything

else then

3.32 x 10 -24
V = cm 3 ,

0(1 +x H)

p = density in gm/cm 3,

and x is the concentration of hydrogen by mass. For small v,
H

exp (-2n_) << i.

The probability can now be integrated over a Maxwellian

velocity distribution to obtain a rate of free electron capture
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of

Pe = 1.9 x 10 -9
0(1 +x H)

%
Te

sec- 1.

When the calculation is done properly, i.e., including

relativistic effects etc., the rate becomes (Bahcall, 1962)

Pe = 2.12 x 10 -9 0(I + XH) sec-i

½
Te

correct to within a few percent.

5
Enerqy Generation Rates

Since the first proton-proton reaction starts off the

PP series the rate of the proton-proton reaction will determine

the energy generation rate in effect. If we put together

what we have derived previously we find a reaction rate for

the proton-proton reaction of,

r = (i 0 + 0 I) x 101_fgpx s
" -- _ S

e-SSo81 Te-_s

where

g(T) = 1 + 5 35
12_ 288_ s+

...+/= /\%uSzdE! (E(T) + 3__55kT)
S(0) 36

or,

g(T) _ 1 + 1.23x10-STe Vs + 7.8xl0-ST Ws

+ 6.73xI0-4T

5This section follows Reeves (loc. cit.) and uses his data.
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½/T 6 "f = electron screening factor = 1 4 3.25 p

T = 33.81 T6 -_s-

At temperatures below about 8 x 106 OK only the H I (p, 8+_)D _

and D_(p,y)He 3 (i.e., the p-p and reactions can come into

equilibrium. For these two reactions combined, the Q value

(neglecting the energy lost by the neutrinos) is 6.675 Mev

or 1.069 x 10 -5 ergs.

The energy generation rate is then

e = (i.I + 0.i) x 106 fgpxH_e -33"81T6

ergs/gm-sec

for T e _ 8.

If the temperature is sufficiently high the He s may

react with whatever He 4 is present (leading to the PP II

chain) or may react with itself thus completing the PP I.

If these reactions do take place the PP I reaction will go

faster at lower relative temperatures or when the He 4 to H I

rltio is lower. We note, however, that the PP I requires

two protons for completion whereas the PP II requires only

one. When all factors are considered it turns out that the

relative energy generations from the three PP cycles can be

expressed in terms of the He 4 to H I ratios.

The total energy generation for the three PP cycles is
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then,

where

Cpp = ¢'V ergs/gm -sec,

= (2.06 + 0.2) x 106fgpx_e-33_81T6-'/Ts_ _
-- H

ergs/gm-sec

and V is a function of x4/x I where x I = x and x is the mass-H 4

fraction for He 4. V is plotted for two values of x4/xl, on

the following figure. (x4/x I = I corresponds roughly to the

present solar composition and x4/x I = _ corresponds roughly to
4

a primeval sun at the inception of hydrogen burning.)
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CNO Cycles

As stated before, the hotter stars of the main sequence,

with central temperatures of 17 x 106 OK or more, convert

hydrogen to helium mainly by the CNO cycl_ The carbon and

nitrogen serve as catalysts for the reaction as can be seen

from the following scheme for the cycles:

CI_ (p,y) N Is (8+_) C Is

C Is (p,y) N 14

NI ¢ (P, Y) O15 (8+_) N ls

NI_ (p,_)C I_ --_

_/N15 (p, y) O18

-_016 (p, y)F 17 (8+_)O 17

__017 (p,_)N 14

__/017 (p, 7)F I_ (8+_)O 18

--0 Is (p,_) N Is

-F Is (p,_) O Is

From the above, C Is captures a proton and forms N Is

which beta decays to C Is with a half--life of i0.0 minutes.

For the C Is (p, y)N la reaction, S(0)= _20 + 0.15) key-barns

with _dS/dE> = 5.81 x 10 -3 barns.

The C Is captures a proton to form N 1 4 which is stable

(S(0) = 5.52 + 0.7 key barns, (dS/dE> = 1.94 x 10 -2 barns).
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The N" 4 then captures a proton to form OIs (S(0) = 3.12 + 0.25

key barns, <dS/dE> = -2.67 x 10 -3 barns) which beta decays with

a 2.07 minute half-life to N Is . The N Is, for most of the time

undergoes a(.p,c_ reaction to form C 12 (5.34 X104 kev barns,

8.22 x 102 barns) thus _-_-_ the Cla......... _ which we started with

leaving a He 4 We may expect, however, that if the cycle just

illustrated turns over a few thousand times, the N Is will take

an alternate route and y-decay into 018 .

kev-barns, _S/dE> = 1.86 x i0 -I barns_)

cycle continues on as shown

these reactions are unknown.

(S(0) = 2.74 x I01

If this happens the

Some of the cross sections for

For those of which there is some

data; this data is listed at the end of this section.

The reaction rate for the cycle is, as usual, governed

by the slowest reaction of the group, and this is the

NI4(p,y)O Is reaction. An important consequence of this in

terms of nuclear synthesis is that when the CNO cycle is in

equilibrium N 14 is the most abundant nuclide, 0 Is probably

the next most abundant, then C12,C Is lower still and N 15

vanishingly small.

There is an interesting aspect of the C is, C la ratio.

Since both these nuclides have the same charge number, their

reaction rates differ only slightly as they are affected by
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the slightly different reduced mass of the proton for each of

the two cases, and their equilibrium abundances are in the

ratio of their cross section factors S(E) This ratio (C_2/C 13)

is then about four. The spectra of some red giants whose atmos-

pheres contain carbon molecules indicates that this ratio exists

in these atmospheres.

The reaction rate for the NI _(p,¥)O _5 reaction T%

r = 1.98 x 1032 fg_x14xHe-152"313T6-_s / Ts_ sec -] gm -I

where

g = 1 + 2.74x10-ST_ s - 3 74x10-ST6_ - 7.17xl0-_Ts,

½
f = 1 + 1.75 p'/Ts_ _

and x14 is the mass fraction of N _4.

The energy released is (for temperatures greater than or

equal to about T s = 16), 1

¢CN = 7 94xl_fgP_1_H e-152"313T6-3
T-2/3 0 erg/gm sec

For temperatures below T 6 = 16 the period of the cycle is too

long to let the 0 Is reach an equilibrium abundance relative to

the other nuclides in that portion of the cycle.

Once the elements with atomic masses in the range from

twelve to 20 have been built up following reactions as have

been discussed, another cycle, the Ne-Na cycle, assumes

significance because a byproduct of the cycle is Ne 21 which

is a potential source of neutrons. As will be discussed later,
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The formation of neutrons leads to the for_L1ation of the very

heavy elements (beyond iron) on a slow time scale. We shall

only list the reactions for the present with the further

comment that the temperature (T6--50) required to destroy Nee°

turns out to be obtained in hydrogen-burning shells of red

giant stars.

Ne-Na Cycl e

Ne s° (p, y)Na s i (8+ _)Ne 21

Ne sl (p,y)Na 22 (8+v)Ne e2

Ne _ (p, 7)Na _3

Na _s (p,_)Ne _°

0% Na _3 (p,y)Mg _4

(The cross sections for the above, if known, are listed at the

end of this section.)

As a summary and aid to computation the remainder of this

section is devoted to a listing of the pertinent reactions

discussed in this section, cross sections, and miscellaneous

useful data.
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Table: Proton-Proton Chain

H I + H I . D s + e+ +

D s + H I - He s + 7 PPI

+ He s _ He 4 + 2H I

+ He 4 _ Be7 + 7

Be 7 + e- _ Li 7 + v

Li v + H I _ Be s + 7

. Be e _ 2He 4

\'Be 7 + H I -' Bs + 7

PPII

B 8 _ Be s + e+ + v PPIII

Be 8 _ 2He 4
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Table: The CN0 BI-CYCLE

NIs + Y

C_3 + e + +

N 14 + y

0 Is + y

N Is + e+ +

C Is + He 4

0 Is + y

F 17 + Y

017 + e+ + _;

N 14 + He 4

F 18 + Y

01 s + e + +

N Is + He 4

01 s + He 4
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Table: The NEON-SODIUM CYCLE

Ne _° + H l -. Na21 + y

Na 2_ _. Ne _ + e+ +

Ne _.l + H I _. Na _ + y

Na 22 _. Ne s2 + e+ +

Ne s2 + H _

Na s s + H _

/

_Na s3 + H _
-. Mg 24 + y
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From section entitled thermonuclear reaction rates.

Reactions per second per nucleus of type 2:

p = 4.34xi0 s px_ (AI+A_) S 7s c -T sec -I

A_SAs Z_Z_

where:

T = 42.483 ZI_Z_2 AIA_ _ %/a T -_3

L- J

S = _E exp 31'285 Z_Z_ A_A__ ½

_(A_+Aa)E

x_ = concentration by weight of particles of type 1 in the

gas

= cross section in barns

E = energy in c.m.s, in kev.

T 8 is in i06 OK

defining:

4.34xi0 s (Az+A__ (7T%/_)s

A_ s A s Z_Zs
a

B = I T_ 3

we can write the reaction rate as:

p = A (px I ) T -%_ exp(-B/T _) sec-i



React ion

H I (p, 8+v) D e

De (P, 7 )He _

D 2 (d, n) He s

D e (d,p) H a J

He s (C_, Y) Be 7

HeS (He a ,2p) He 4

Li e (p, _) He s

Li 7 (p, _) He 4

Li 7 (p, Y) Be e

Be 7 (p, Y) Bs

Be s (p, _) Li 6

BeS (p, d) Be s

B Io (p, e) Be 7

B Ii (p, _.) Be 8

C me (p, V) Nls

C:"s (p, y ) N_"4
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S-_kev-barns_ A

3.36xi0-_ _. 3.3x10 -I 3

+0.4 +0.4

2.5x 10 -4 2.2xi0 s

+I. 3 +__0.4

B

33.810

+ o.003

37.210

+ 0.002

9.6xlO I
3"6XI01° 42.6

0.47 l'2xl0S 128.277

_+0.07 +0.2 _ 0.004

1 o2xlO 3

5.06xI0 a

100+25

,-,1

2x10-_

±I

3.01XI04

3XI04

I_79XI04

8.99XI04

1.20

+0.15

5.52

+0.7

4.3xi011

5.96xI0 zs

lo2x10 I_

_i0 8

2.6Xi07

_1.3

3.84x101s

3Xi01s

2.45x10Za

1.23xi014

1 7x10 s

+--0.3

8. Oxl0 _

122,,774

0.004

84.149

0.005

84.731

0.004

84.731

O.004

102.645

0.005

103.615

O.004

103.615

± 0.004

120_640

± 0.oo3

120.974

± O.003

136.926

0.002

137.200

0.003

(dS/dE} (barnsl

2.7x10-e4

7.9xi0 _

-2.8xI0-4

5.81xlO-a

1.94xi0-_
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Nz b (p,cz)C _

N"zs(p, y)OZB

°z _'(P,¢) F+ 7

o z7 (p, _) Nz 4

F _e (p,cO Oi 8

NeS°(p,y)Na_l

Ne az (p,y)Na se

Neaa(p,y)Naa3

3.12

+0.25

5.34xi04

a

4.7xi09

_o.4

8.0xlO s

2.74xi0 z
4.2xi01o

1.06xlO_

+o.18

2xlO s
3xl0ZZ

ixlo e
1.5xi014

IxlO s
1.5xlO zs

9.33xi01o

>lOZO

alOZ_

3xlOZ=

55&20

>5.6

_550

3xlO a

>104
>lOZa

B.a.

152.311

+_ O. O02

152.538

+ 0.003

152.538

+ o.oo3

166.958

o.ooi

167.154

± 0.003

167.327

& o.oo2

181.164

0.003

194.510

0.002

194.658

0.004

194.793

+ 0 002

207.704

& 0.004

-2.67xlO-a

8.22xi0 _

1.86Xi0'I

-2.81XI0-_
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For the computation of reaction rates and energy

generation rates the following are tabulated: s

1

g = 1 + UT6_ + VT62_ + WT e ,

where g contains correction terms including <dS/dE> and

Salpeter's correction series for the integration of the

Gaussian of section 4. For the use of g (and the function

f, or electron screening correction) refer to the text of

this section.

S Taken exclusively from Reeves (Op.Cit.).
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13. Stellar Models and Evolution

Stellar models are almost always calculated on the

assumption that the star is spherically symmetric and in

hydrostatic equilibrium. We have introduced, in Chapter i0

the set of equations which govern the structure of stellar

dP(r) = . GM(r) p(r)

dr rs 13 .i

interiorsz

dM(r)
= 4.r" p(r) 13.2

dr

dL(r) = 4,r s p(r) ¢(r) 13.3
dr

For radiative equilibrium:

dT(r) = . 3__K_K _(r) L(r)

dr 4ac T_ 4_r" 13.4

Por convective equilibrium-

1 dT(r ) = I'-I 1

T dr F P dr 13.5

In these equations P is the total pressure (gas plus

radiation), T is the temperature, M(r) i8 the mass within

a sphere of _adius r, L(r) is the energy crosslng the sur-

face of a sphere of radlus r per second, ¢(r) is the

energy produced per gram per second, K ks the absorption

coefficient (cm s per gram), and P is the effective ratio

of the specific heats. _ differs from 7 m C_Cv through
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the inclusion of the effects of dissociation and ionization

of the gas, and it will in general vary throughout the

convection zone of a star.

In addition to the above equations there are generally

explicit relations for the pressure, the absorption coefficient,

and the energy generation by nuclear effects as a function

of temperature, density and composition.

Boundary Conditions:

The solution of these equations demands a consideration

of the appropriate boundary conditions. If the explicit

expressions for pressure, absorption coefficient and

energy generation are used to el_minate p(r), K, and ¢(r)

we are left with four differential equations in the five

variables P(r), M(r), L(r), T and r. A specification of

four boundary conditions should enable us to solve for

four of these variables in terms of the fifth variable. In

general the resulting equations cannot be integrated analytically

but must be handled numerically.

In the actual solution of these equations several

complications arise. First, as we hav_ in fact, two sets of

boundary conditions to be satisfied (at the center and at

the surface) we must in general vary these conditions to
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obtain a self--consistent set of boundary conditions. Let

us suppose, then, that we have decided upon a set of boundary

conditions for the center of a star. We still cannot simply

integrate numerically through the stellar interior and

expect to arrive at the appropriate conditions at the other

boundary. The explanation of this apparent lack of

consistency lies in a more careful consideration of the

nature of the integration variables. The quantities M(r)

and L(r) are seen to be zero at the center and increasing

outward from the center; conversely, P(r) and T are seen

to decrease outward. In integrating P(r) and T outward

from the center to the surface a small variation or error

at the center causes a very large variation in the solution

at the surface. This may be seen for instance in the 1/T s

dependence of equation 13.4. An analogous situation is seen

to occur when one attempts to integrate M(r) and L(r)

inward from the surface.

Consequently a numerical solution of these equations

for a complete stellar model must proceed in the following

manner. First the equations are integrated outward to

some intermediate radius r i. The equations are then

integrated inward from the surface to that same radius.
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Finally, the two solutions are fitted at the chosen ri

by a variation of parameters at the center and at the

surface. We can proceed now to a consideration of the

central and surface boundary conditions.

At the center of a star we observe from the defining

equations that

r = 0: M(r) = 0, L(r) = 0

Thus at the center the parameters to be specified are

Tc and P , the density being dependent on these choices
C

through the equation of state.

We have at the surface the choice of a specification

of T s and P or, equivalently, of L(R) and R. Let usS

suppose we can neglect surface temperatures and pressures

entirely and assume

r =R: T s = 0, Ps = 0

Although this choice quite obviously will not lead to a

proper representation of the surface layers it does in many

instances result in a reasonable set of solutions for the

interior of the star. However, for stars possessing very

large envelopes in the red-giant stage these 'zero-boundary

conditions' failed in that they resulted in radii which were

greater by orders of magnitude than the actual radii, with
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accompanying densities so low that the actual radii lay

at a distance less than one optical depth. In such cases

these become a very unrealistic set of boundary conditions.

Let us rather define the surface as that point at which

the actual temperature is equal to the effective temperature

(T s = Te). The luminosity of the star is given here by the

product of the surface area and the intensity per unit

area:

L = (4_R s) a<__ Te4 _

= _ ac R s T 4
s

13.6

Here c is the velocity of light and a is the Stefan-Boltzmann

constant.

The atmospheric layers above the surface we have defined

have an optical depth as given by:

7 s = _ K p(r) dr 13 .7

R

An approximate value for 7s may be taken from the theory of

radiative transfer in stellar atmospheres: 7s _ 2/3. A

refined atmospheric calculation would necessarily take into

account the variation of the absorption coefficient K with

both height and wavelength. The variations of K with the

wavelength are often termed 'non-grey' effects. In this

calculation we will consider K to be independent of both height

and wavelength.

® 2

7s = K I p(r) dr =-
n 3 13.8
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Assuming that the height of the atmosphere _ small

compared to the radius and that the mass is entirely within

a radius R, we have from equation 13.1:

P = GMs _ p (r) dr
R

13.9

From equationsl3.8 and 199 we have then an approximate
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value for the surface pressure_

P = 2 GM
S

3 KR _ 13. i0

We note again that we could have specified L(R) and R

rather than P and T . These surface boundary conditions
S S

are accurate enough for most model-making purposes as,

generally, less sophisticated values for internal parameters

govern the uncertainties.

In our study of the physical conditions in stellar

interiors we have dealt with some of the problems of energy

transport in stars. When the temperature gradient is super-

adiabatic, convection becomes the dominant process. As

energy transport by convection is an extremely efficient

process, a temperature gradient which is just barely super-

adiabatic can account for high luminosities. As the surface

layers must lose energy by radiation, the temperature gradient

in the surface layer must be decreased sufficiently to

drop below the adiabatic temperature gradient. There must

therefore be a transition region in which energy transport

by convection gives way to energy transport by radiation. In

this region, though the temperature gradient may be super-

adiabatic, energy transport by convection and by radiation are

comparable. We must develop a physical theory of convection
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in order to construct the structure of a star in this

transition layer. It is entirely possible that the

properties of the stellar interiors will be determined by

the properties of this transition region.

Theor7 of Convection

We begin our study of convection with a discussion of

Prandtl's mixing length theory as applied by Erika Bohm-Vitense*.

In a region of convective turbulence we consider an element

of gas as it forms and moves through a distance termed the

'mixing length '_ and then dissolves into its surroundings.

It is assumed that the element moves adiabatically. In

absorption the energy excess is released through ordinary

radiative processes. This is clearly a crude picture of

such a process; actually the moving turbulent element loses

energy continuously as it rises, hence the temperature

gradient is not strictly adiabatic.

We can write for the temperature gradient of the structure:

V = d _nT
d _n P 13.11

The local adiabatic temperature gradient we will write

as Vad; the local radiative temperature gradient as Vra d.

*Vitense, E.B. 1958, Zeits. f. Astrophys., 46, 108
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The moving element may have a temperature gradient differing

from that of the structure due to the fact that it is

continuously radiating energy to its surroundings. This

temperature gradient we will write:

V' = <d%n D '
%n 13 .12

The criterion for instability against convection is that

the temperature gradient of the structure is super-adiabatic:

V > Vad 13 .13

The total energy flux is then given by the sum of the

radiative flux and the convective flux:

Fto t = Fra d + Fconv =
4_R _ 13.14

The radiative energy flux is given by'.

Fra d = 16 _ T_ V

3K p H 13.15

The convective energy flux is given by:

Fconv = Cp p T v _ (V - V') 13.16
2H

Here Cp is the specific heat at constant pressure, H=RT/8_g

is the pressure scale height, g is the gravitational accelera-

tion, 8 is the ratio of gas pressure to total pressure,

R is the gas constant, Z is the mean molecular weight, o is

the radiative constant, K is the opacity, and _ is the

mixing length.
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In this theory the mean velocity is given by:

= _ (V - V') ½ i_17

Here the factor 'C' accounts for the change of the

degree of ionization of matter with temperature and

density changes and can be expressed:

C= i- _ %n_

%n T 13.18

The temperature of the moving element is given by a

relation which represents the ratio of the excess energy

content of the element to the radiation during its

lifetime.

V' -V c p T Kp _

- V' = P 24_T 4 13.19
Vad

These arethe basic equations of this convection

theory. We can now consider the relative values of the

four temperature gradients we have defined. From equation

13.13 we have the condition for instability against convection.

The radiative temperature gradient will necessarily exceed

the structure temperature gradient as the structure gradient

is in effect a compromise between energy transport by

convection and energy transport by radiation. The temperature

gradient for the turbulent element must lie in magnitude

between the structure gradient and the adiabatic gradient
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as the element is moving rapidly and has a temperature

excess with respect to its surroundings. Thus we may

wr i te:

Vra d > V > V' > Vad 13.20

It should be stated here that these equations and the

development of the theory assume that the mixing length

'%' is a small quantity. In dealing with stellar structures

the assumption is generally made that the mixing length is

of the same order of magnitude as the pressure scale

height. If the mixing length is treated as a parameter

which can be adjusted to fit what might be considered

appropriate conditions, then we observe that all of the

uncertainties in the theory can be lumped into the uncertainty

in the value of the mixing length.

Gravitational Enerqkv 'Source

We shall now consider what would happen in that case

in which we assume the energy generation to be entirely due

to release of the gravitational potential energy of the

contracting solar mass.

The luminosity is

R

L = I 4,r s p e(r) dr 13.21
O

where e (r) is the energy released per gram of material per
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second due to contraction of the star and

¢(r) = d L(r)

4nr _ pdr 13.22

If U is the internal energy per gram of material and V

is the specific volume, then at each point in the star

__Xv
_U_t = - ¢(r) - p _t 13.23

This states that the change in internal energy is balanced

by the energy lo88 and the work done by the pressure•

The internal energy per gram of material at a point inside

the star is

U = cv T(r) 13.24

Assume that the ideal gas law governs the interior of the

star

(r-i) p(r) 13.25

where _ is the ratio of specific heats at the point

considered.

we have

If we replace V by its reclprocal (V-I/_)

" _ ! 11 P
(r-l) p _t - (r-l) ;" _t

13.26

If it Is assumed that the star ks contracting homologously,
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then the rate of change with time of pressure and density

at every point is completely determined by the rate of

change of the radius of the star in such a way that

1 d_ = 1 d__rr = constant 13.27
R dt r dt

-! dR= 1 _ 1
R dt 4P _t 3p _t 13.28

Thus we have from equation 13.26:

¢(r)

Hence, from equation 13.21:

R

P(r) rs dr

a I_30

We thus have an expression for the luminosity for the

case in which the energy generation is entirely due to the

release of gravitational energy of the contracting solar mass.

For a further discussion of the material the reader is

referred to The EaI.ly Evolution of The Sun, Ezer, and Cameron,

Icarus, 1963. We sha_l now use same of the results obtained

in th_s paper to illustrate several of the concepts discussed

in this chapter.

We have presented in our discussion of the physical

conditions in stellar interiors the graphs of opacity for

lines of constant density as a function of temperature from
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the Los Alamos Opacity Code (pps. 59,60). In constructing

models in which the envelope of the star is large, one

must obtain a suitable surface boundary condition. This

demands that we have a reasonably large value for the

opacity in the surface layers. For a star of large radius

we must maintain as far as is possible a high density and

a high temperature. This will assure a high value for the

opacity which means that the distance corresponding to an

optical depth of 7s = 2/3 is a reasonably small quantity,

necessary for a self-consistent set of solutions to our

equations. The large value for the density means that the

temperature gradient must also be large; hence, the star

is seen to become entirely convective.

Figure 15 1 shows the Hertzsprung-Russel diagram for

the models of the contracting sun calculated under these

assumptions, with the mixing length equal to the pressure

scale height. Above the indicated threshold of stability

the models are of academic interest only since the thermal,

ionization and dissociation energies exceed the magnitude

of the gravitational potential energy. These stars would

be unstable against gravitational collapse. The threshold

_f stability as indicated in the figure is that point at which
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the models are just energetically possible. A star formed

at this point, because of its high luminosity, would shrink

rapidly. The structure remains fully convective down to

a certain point as indicated in the figure. Below this

point, a radiative central core begins to develop. At

the point at which the radiative core contains approximately

55% of the mass, the direction of evolution turns. The

dark line shown here indicates the path that would be followed

under the assumption, in this model, of no nuclear sources.

If these nuclear sources are taken into consideration it

can be shown that the star would evolve on to the main

sequence approximately in the manner indicated by the

broken llne in this figure.

Figure 13.2shows the behavior of the luminosity and

radius of the sun as a function of time beyond the threshold

of stability.

Figure 13.3 shows the dependence of the luminosity on

the ratio of mixing length to pressure scale height for a

model in which the radius R - 20_. The models shown in

Figure 13.1 were all calculated on the assumption that this

ratio was unity. We observe that the luminosity is essentially

proportional to the ratio of the mixing length to the
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pressure scale height.

Figure 13.4 shows the dependence of the luminosity on

the ratio of mixing length to pressure scale height for

a model in which the radius R = 2R O.

Figure 13.5 indicates the dependence of the average

velocity of the turbulent elements in the outer convective

zone on the pressure, for a solar model in which R = 20_.

Also shown are the sound velocities at various points of

the transition layers. The peak in the velocity curve

is not realistically determined because the peak structure

is narrow compared to the mixing length. The fact that

the velocities of the convective elements can become an

appreciable fraction of the velocity of sound indicates

that some supersonic phenomena may become important in the

interiors.

Figure 13.6 shows the variation of the fraction of

mass inside the radiative core, and of the temperature at

the bottom of the convective zone, with the ratio of mixing

length to pressure scale height. The temperature dependence

becomes important if one wishes to consider its effect on

lithium burning in the outer convection zone.

Figure 13.7 shows the rate of lithium burning averaged
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throughout the outer convective zone for both isotoPes of

lithium as a function of the evolutionary time of the

solar mDdel_ calculated with the mixing length assumed

equal to the pressure scale height. The total depletion

of the isotopes is obtained by integrating under these

curves.

Characteristios of Stars on The Main Sequence

The preceeding section discussed the formation of a

star of one solar mass from gas and the subsequent evolution

of the star to its place on the main sequence. As was

pointed out in that discussion, the energy sources in the

final stages of evolution do not derive solely from

gravitational contraction of the star, but rather one

expects the star to derive some energy from nuclear reactions.

In particular, one expects the star to burn out its deuterium

once the temperature has risen to about 800,000 degrees,

lithium at about 3-4 million degrees, beryllium at about

5 million degrees, boron and primordial He 3 at about 8

million degrees. These energy sources will have the effect

of slowing down the rate of descent onto the main sequence

to longer times compared to the case of pure gravitational

energy release. Once the star reaches the main sequence the
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regular conversion of hydrogen to helium will take place.

t,

At the moment, no evolutionary model of the sun has

been published which purports to describe exactly the

mode of hydrogen to helium conversion, that is, the proper

break up of hydrogen burning

po.sible. (See Section 12)

into the various PP,cha_ns

In general however, one can

say that in the primordial sun the PP 1 and PP 2 chains

would have been of comparable importance. The central

temperature at this time was probably about 13 million

degrees. As hydrogen was depleted in the central regions

the temperature must have gone up and those regions must

have contracted in order to maintain the energy production

per gram of active material (hydrogen) present. At the

present time the central temperature is probably as high

as 16 million degrees. (The age of the sun to date is

estimated to be about 4.5 billion years). The increase

in central temperature and the steady production of helium

both favor the PP 2 chain as against the PP i. Consequently,

in the sun at the present time the PP 2 chain is probably

dominant near the =enter, with the PP 1 _hain taking over

as one leaves the oentral regions. We note here also that

the PP 3 ohain may aontribute about 1% of the total energy
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and the CNOcycles about 2-3% at the present time. It is

to be stressed, however, that these statements may require

some degree of modification when more exact calculations

can be made.

As seen in Section 12the PP chains have a very small

temperature dependence--- about the fourth power in the

temperature---so that the interior regions of stars of

mass comparable to the sun will not have a very high

temperature gradient and consequentiy the energygeneration

distribution will not become strongly peaked as we approach

the center. In this case we expect that the central regions

will not require an efficient means of energy transfer like

convection but rather may be able to get along with purely

radiative transfer. Toward the less dense outer regions

of the sun, on the other hand, the transfer becomes convective

(but naturally becomes radiative at its outer boundaries

in the photosphere in order to be able to radiate energy

into free epaoe). Thus we have a central radiation sons

followed by a convection zone and topped by an outer

radiative layer. The transition boundary between the central

radiation zone and the convection zone is believed to be

at a temperature near one million degrees. The total
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the PP 3 chain may oontribute about 1% of the total energy
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and the CNO cycles about 2-3% at the present time. It is

to be stressed, however, that these statements may require

some degree of modification when more exact calculations

can be made.

As seen in Section 12 the PP chains have a very small

temperature dependence--- about the fourth power in the

temperature ....so that the interior regions of stars of

mass comparable to the sun will not have a very high

temperature gradient and consequentiy the energy generation

distribution will not become strongly peaked as we approach

the center. In this case we expect that the central regions

will not require an efficient means of energy transfer like

convection but rather may be able to get along with purely

radiative transfer. Toward the less dense outer regions

of the sun, on the other hand, the transfer becomes convective

(but naturally becomes radiative at its outer boundaries

in the photosphere in order to be able to radiate energy

into free space). Thus we have a central radiation zone

followed by a convection zone and topped by an outer

radiative layer. The transition boundary between the central

radiation zone and the convection zone is believed to be

at a temperature near one million degrees. The total
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volume contained in the two zones is believed to be about

equal but because of the vast difference in densities the

outer convection zone may contain only a few percent of the

total solar mass.

If we now consider a more massive star than the sun

we note some startling differences. Here the central

temperature may be 20 millions of degrees or higher so

that there is a switch from the PP chains to the CNO

cycles. The governing reaction in this case is proton capture

by N 14 which is the 'slowest

temperature to the 18 power.

reaction and goes approximately as the

(See page 114

for the expression of temperature sensitivity but n_te

that for non-resonant reactions the equation for n is

1

n = _ (7-2) and no___tas stated there. Also see page 159

for the numerics of the CN0 cycle_ This temperature

sensitivity for massive stars implies a high temperature

gradient in the central regions of these stars which in

general will exceed the adiabatic gradient so that con-

vection will set in. For a massive star on the main

sequence the surface temperature will be higher than that

of the sun so that the outer convection zone will decrease

in extent. If we went to extremely massive stars we might
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have little or no surface convection: (Note that we still

require a radiation layer at the photosphere. We will

assume this is always the case and not refer to it hereafter.)

The central convection zone, however, may grow until it

comprises half the mass of the star. Between the inner and

_uter convection zones there will be in general, a radiative

zone for energy transfer. Thus we find three zones in

the case of massive stars as compared to two for stars like

the sun. (A schematic diagram of the situation is shown

in Figure 13.8) If we start with a sun-like star then,

and examine stars on the main sequence of steadily increasing

mass we find that initially we have no central convection

zone and then progressively we obtain one at the expense

of the outer Qonvection zone while still maintaining an

intermediate radiation zone.

mvolutlon off the Main Soauenae

For very massivs stars ths luminosity 16 found to

be roughly proportional to ths mass. About half of the

total mass will be used in the aonvorslon of hydrogen to

helium while such a star is on the main sequence so that in

offset the total energy available is also proportional to

the mass. This implies that the time t&kon for the star
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to convert all the hydrogen at its center to helium, i.e.

the time during which it is on the main sequence, must be

roughly a constant. This t/me turns out to be about

3 million years for very massive stars independent of the

mass.

As we go to less massive stars we find that the

luminosity begins to decrease more rapidly than the

mass so that the lifetimes on the main sequence become

longer. For stars of about spectral class G or redder

the main sequence lifetimes are probably longer than

the age of our galaxy (about 1010 years).

For the general trend of stellar evolution we refer

the reader back to Section 8, page 15, Figure 8.2, where

the Hertzsprung-Russel (H-R) diagrams for several stellar

clusters are shown. Diagrams such as this represent the

observational approach to stellar evolution and are

excellent guides to all theoretical studies in the field.

An example of a combined observational and theoretical

approach is shown in Figure 13.9. The set of semi-empirical

evolutionary tracks shown are due to Sandage* and indicates

what paths are taken by stars as thmy leave the main sequence

........*A.R. nd Ap. J., 125, 435, 1957
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when the hydrogen at their centers has been exhausted.

These tracks have been constructed by the examination of the

characteristic H-R diagrams of several globular and

galactic clusters coupled with theoretical tracks calculated

by Hazelgrove and Hoyle*. One should note the line

passing thru the evolutionary tracks fabled "constant time

locus". This line represents the locus of all stars

which have been created at a given time on the main

sequence and have subsequently evolved to those positions

on the H-R diagram given by that line. Note that the more

massive stars, those with the higher initial values of

absolute magnitude, have evolved off the main sequence

much faster than the less massive stars in agreement with

the previous discussion. (A graph of lifetime on the main

sequence versus mass is given at the end of this section).

Note also the apparent gap in the "horizontal branch" at

the left hand portion of the,evolutionary track. This

corresponds to the location of variable stars as discussed

in Section 8.

As discussed before, the ultimate fate of all stars

appears to be evolution to the white dwarf stage. Figure 13.10

*C.B. Hazelgrove and F. Hoyle, K.N., ii_, 112, (1959)
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shows a heavily populated portion of the H-R diagram

which seems to consist of faint stars approaching the

white dwarf graveyard after leaving the horizonal branch.

Little, if anything, is known of the details of evolution

from the red giant region (shown in Figure 139 as the

right hand tip of the orizonal branch) to the white

dwarf region.

Evolution of Massive Stars_

Though to date the whole course of stellar evolution

has not been explained satisfactorily, some phases of

evolution, at least to the red giant stage, have been

explained in a -eneral sense. As was discussed

befor_ a massive star sits on the main sequence until

about half of its hydrogen in the central convective region

has been converted to helium. At the end of the star's

lifetime on the main sequence the hydrogen fuel at its

!

center has been exhausted but the star must still continue

to radiate. Therefore, the central region must contract

releasing gravitational energy, hence maintaining its

luminosity. The temperature of the central region will

then increase, thereby increasing the rate of hydrogen

conversion to helium at distances away from the center.
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As this hydrogen is exhausted the gravitational shrinkage will

continue. Finally the bulk of the central region will be

exhausted of hydrogen leaving a dense central helium core

surrounded by a thin shell of hydrogen-rich material which

will provide the energy source. As evolution progresses the

central inert core will grow and the hydrogen shell will move

out towards the stellar periphery. In order to maintain a high

temperature in the hydrogen burning shell the central core

must shrink, thereby raising the central temperature to higher

and higher values.

The structure of the star becomes rather peculiar as the

above process goes on. In the outer regions the material is

essentially all ionized hydrogen with a mean molecular weight

of one half whereas the helium core has a mean molecular weight

of four thirds (one alpha particle and two free, elec-

trons). (Actually the mean molecular weight in the envelope

will be somewhat higher than one half, say perhaps two-thirds,

since the star may have some helium there.) We thus have a

discontinuity in mean molecular weight at the junction of the

helium core and the outer regions of the star. On the other

hand, there must be a continulty in the physical variables of

temperature and pressure. One finds that as a consequence of

these facts, the star must develop a very large, tenuous outer

envelope surrounding the helium core. In this fashion the
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star approaches the red giant stage.

In the case of a very massive star the gravitational contraction

of the central region need not progress very far until the

central temperature will have risen to the point where

helium burning may set in (about 30 million degrees).

Thus the star will have two sources of energy, helium

burning at the center and a continuation of hydrogen

burning in the shell surrounding the core. As the star

evolves carbon burning may commence at the center. This

process may continue until there are many modes of energy

generation taking place in various regions of the star.

These later stages of evolution must occur at a

very rapid rate since the upper regions of

the H-R diagram are sparsely populated.

Evo!ution of Star m of About One Solar Mass

The evolution of sun-llke stare is much like that

of more massive stars except that because the centers of

stare of one solar mass are in radiative equilibrium

rather than convective equilibrium the active energy-

producing hydr_en is not in constant circulation within the

central core. Thus, we expect the hydrogen will first be

exhausted in a much smaller region around the center of
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the star. The exhaustion about the center will also

take place at a much more even rate. When about ten

per cent of the mass of the central radiation region

has been converted to helium the star will move off

the main sequence.

As in more massive stars a helium core will develop

at the center,though smaller size. Again, the energy

generation will take place in a shell surrounding this

core but because of the thinness of the shell the

temperature there must be very high in order to sustain

an adequate reaction rate. At this point the mode of

hydrogen conversion gradually switches from the PP chains

to the CNO cycles.

The above processes will take place at a very

slow rate during the initlal stages of evolution off

the main sequence so that, although the core contracts

gravitationally and the hydrogen shell rises in tempera-

ture, there will be a relatively small temperature
0

gradient between the stellar center and the hydrogen shell.

This indicates that an inert, isothermal core will be

produced. An even more interesting property of the core

is that for less massive stars we expect the inert helium
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core to become degenerate as an examination of the

arguments leading to the evolutionary tracks shown in

Figure 103 on page 68 and the discussion on page 73-74

will show. This represents a drastic change in the struc-

ture of the star. We also have a large outer envelope

forming for the same reasons as in the massive star case.

The existence of the isothermal core becomes more apparent

now that the core has become degenerate since this material

has a very high thermal conductivity.

As evolution proceeds the degenerate core grows and

the hydrogen-burning shell moves out. The central tempera-

ture rises owing to more rapid gravitational contraction of

the core. When the central temperature reaches about 80-100

million degrees we have brought the star to the tip of the

red giant branch. Helium reactions begin to take place at

the center, but because this region is degenerate, the

pressure will not change significantly with the subsequent

rise in temperature, so that no expansion takes place and

hence the density remains essentially unchanged. The

helium reactions then proceed at faster and faster rates

because of the high temperature sensitivity of the reactions

themselves. This process has been appropriately called the
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"Helium Flash" by Schwarzschild. The rapid increase in the

helium reaction rate continues until finally kT in the central

degenerate region has been raised above the Fermi level

and the ideal gas law holds once more, the material no

longer being degenerate. The central region thereupon

expands due to the increase in temperature until enough helium

has been burned so as to replenish the gravitational energy

released during the contraction phases of the helium "core.

About one per cent of the helium will be converted to carbon

in the process. As the core gets larger the outer envelope

will decrease in slte and the star will assume a more normal

appearance. This ks exemplified by a backtracking of the

evolutionary track from the red giant tip (See figure 13.9>.

The details of evolution past this stage are practically

unknown (except for the ultimate end as a white dwarf) and

in fact some of the results Just discussed must be viewed with

caution because of the rapidity of the reactions and more

explicitly because dynamic effects have boon neglected

although the star itself has undergone gross changes in

structure in short periods in time.

Mass Loss in ltvolvina Stars

It has been observed that stars in the red giant phase
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seem to be losing mass from their surface at a rapid rate.

Some of the more massive stars seem to be losing mass at

the rate of one solar mass every million years, indicating

that their red giant phase cannot last very long. This

process seems to be connected with what has been called the

"solar wind" wherein the star develops a corona sufficiently

hot to eject the surface materials to infinity. (The

sun's corona is believed to be at a temperature of about

two million degrees.)

Clearly these effects complicate the whole march of

stellar evolution and no calculations have been made to

incorporate them. All that can be said here is that mass

loss seems to be necessary if a star is to reduce its mass

below the Chandrasekhar limit (_1.4 _).

We will leave to a later section the problems associated

with the more violent stages of evolution, namaly the eruption

of stars into novae and supernovae.

Figure 13.11 shows the variation of lifetime _ on the

main sequence as a function of mass. The abscissa is in

units of the logarithm to the base 10 of the ratio of the

states _ass to the mass of the sun. Thus, at a value of

this parame_ of sere we find the sun's llfotlme on the



-209-
II

I0 ......' I ' I ' I

Lifetime on the

i I w I ' I I

_. os a Function of Stellor

iOiO (from Limber)

U

g
® I0'

(/3

C
0m

O

¢,-

O

(D

E
,m

.4,.-

NI---
,immb

_I

Moin Sequence
Mass

1 I , I

0 0.4 0.8

, I , I

1.2 1.6

Iog,o M/Mo
FigUrl _3. ii

l d



-210-

sequence as being 1.2xlO 10 years, about 5x109 years of

this having elapsed to date. Note also that for very

massive stars (M/_ _ i00 and greater) the lifetime curve

approaches a value of about 3x106 years as mentioned earlier

in this section. The data for this figure is taken from

D. Nelson Limber, Ap.J. 131, 169, (1960).

l_. _He_ium Thermonuclear Reactions

In the 1950'e, questions arose concerning the later

stages of stellar evolution and whether any thermonuclear

reactions took place under these conditions. E.J. Opik,

for one, noted that for sufficiently large temperatures,

the triple collision of three alpha particles would take

place to make C 12. At about the same time, F. Hoyle made

the interesting observation that we must not only account

for the fact that stars generate energy in later stages of their

evolution but we must also account for the fact that the

products of these thermonuclear reactions are the elements

we observe and out of which we axe made. The triple

collision of alpha particles is a sufficiently rare event that

subsequent capture of an alpha particle to form 016 would

occur with comparative haste. The C 12 made by the triple

collision would almost instantly disappear, making 016.



make a new search for such a level.

7.656 May, which is slightly lower

but not significantly so.

characteristics.

Be $ plays a
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Hoyle said, since carbon is one of the most significant

elements in our total environment, substantial quantities of

it must be produced, and the simple triple collision of

alpha particles is not the way to do this. If there were

12
a resonance which would make the rate of formation of C

'_comparable to or greater than the rate of destruction of C 12

to form 016, then this would help to explain the observed abundance

of C 12. , On this basis, Hoyle predicted that there should be

a level in the C 12 nucleus at about 7.7 Mev. There was some

suspicion at that time that a level did exist in this

vicinity, but the matter was in dispute and the experimental

evidence inconclusive. Hoyle's prediction caused nuclear

physicists at the California Institute of Technology to

They found one at

than Hoyle's prediction,

This level does have the desired

role of some importance here. Be 8 is

unstable toward break-up into alphaparticles by about

94 key. None the less, we can use statistical mechanics

to determine the equilibrium concentration, which wil_ in

general, not be zero. Zt is a characteristic of any kind of
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reaction that it is reversible. If we consider Be8 as

being formed from and breaking-up into two alpha particles,

then the basic equation of statistical mechanics relates

the equilibrium abundances of the two independent species and

the compound by

where the n*s are number densities, the _'s are statistical

weights (which are partition functions if there are several

levels in each of the species), and the X in the Boltzmann

factor is the energy of the ground state above the sum of the

masses. The equilibirum abundance of Be 8 is

-31 - 473/T e

n2 = 9.40xi0

8

where subscript 1 refers to _ particles. Considering the

conditions at the beginning of the helium flash, i.e.,

then i part in

Be 8

T8 Z 1

P Z 105 grams/cm3

l08 of the helium will be in the form of

at equilibrium.

For the formation of C 12 there is a 7 656 + 0.007 Mev

level that acts as a resonance at the second excited state
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of C 12. It has spin 0 and even parity.

excitation energyz

Second excited state

To find the

7.656+0.007 Mev

Sum of Masses of 3 a's 7.2753+0.0014

Excitation energy 0.381+0. 008 Mev

The e..,_ level ,_ i,,_...,of C 12--'"'" -.._ ..... looks like this,

I

El

From the first excited state (2+, 4.43 Mev) to ground

we have an electric quadrupole (E2) transition. From the

second excited state (0_,7.653 May) to ground, we have a

0+ to 0+ uransltlon, which cannot take place with the

emission of one gamma raM. There could be a simultaneous

emission of two gamma rams, but experimental results pre-

sently indicate that the probability of this occurrence is

too low to be significant. There can be a transition between

We spin 0 states by emiJsion of an electron pair, providing

i
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that this channel is energetically possible • Since

this is the case, there is an electric monopole transition,

E0, that involves the emission of an electron and a positron,

which carry awa_° no angular momentum.

In addition, there can be an electric quadrupole

transition from O+ to 2+. The latter level will decay

by an E2 transition also.

Finally, the level may decay into three = particles,

i.e., the inverse of the formation process.

There have been many fascinating experiments to

study the character of these low-lying states of C 12 and

particularly to study the properties of the 7.656 Mev level

because of its interest for astrophysics. One of the early

experiments of interest was that of Fowler, Cook, Lauritsen,

Lauritsen, and Mo_er (1956) which showed that the second

excited state of C 12 can be formed by alpha l_rticles. They

observed the B-decay of B 12 which in a certain small fraction

of its decays goes to the second excited state of C 12

instead of the ground state. It was observed that _-_ocay

to this 7.656 Mev stats was followed by =-omission. This

was a direct demonstration of the inverae of the reaction

which we have boon discussing. This is important bocause
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it shows that the spin and parity of this level are such

that the inverse reaction, which forms C12, is also possible.

This indicated that enhancement of the triple-alpha reaction

was possible through the Be 8 intermediate stage, using the

resonance of the second excited state of C 12.

Now, if we consider the expressions for the

thermonuclear reaction involving a resonance, we find that

we need to know the formation width. In this case it is

the sum of the radiation width for transitions to the 2+

state plus the pair emission widths for transitions to the

ground state of C 12 _he alpha-particle width of the state

is more than i000 times the radiation width_ hence the

radiation width may be neglected with respect to the alpha

width. We need absolute, not relative, values for these

two widths.

When carbon is bombarded by high energy electrons,

peaks appear in the scattering cross section corresponding

to excitation of the first excited state, the second excited

state, etc. The excitation of these states by inelastic

electron scattering is equivalent, in a sense, to the de-

excitation of the states by pair emission. In quantum electro-

dynamics the emission of a positron is equivalent to the
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absorption of an electron. Therefore, the matrix element

for this transition is essentially the same as it is for the

emission of the electric monopole pair.

Alburger and some of his colleagues were able to measure

the relative width for pair emission, and found:

Pe +
(6.6 + 2.2) x 10 -6m iI

?

Alburger also succeeded in measuring the rate of y-ray

decay to the 4.43 Mev first excited state of C12. Eventually

the y-rays themselves were observed, but first it was done

indirectly by observing C 12 recoils. This gave

"_ - (3.3 + 0.9) x 10 -4

?

so we find

-- - 50 + 22
l

I'et.

Now, using the pair emission width deduced from the cross

section for electron inelastic scattering forming the 7.656

Mev state, as mentioned before, we can find absolute widths.

Prom the calculations of Walecka we have

1"e..k - 4.5 x 10 -5 evl



therefore,

Now,
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= 2,5 x 10 -3 ev
Y

? _ r = 7 ev
--

This is equal to the sum rule limit for single particles.

We can think of the 3_ reaction as being equivalent to the

Be 8 (_,y)C 12 reaction. There are other possible ways of

o0mpleting the reaction, such as a true triple collision,

but it does not matter what the details are in view of the

fact that the 7.655 Mev state decays overwhelmingly into

='s. We can calculate the formation of C 12 as

leakage from full reversibility of 3 = = (C12_

according to |tatlstiaal equilibrium.

are respectively the number densities

Be 8 nuclei, and C 12. excited states, then

a sllght

aalculated

If n_, _, and n a

of alpha _rtioles,

where _,m ks the energy of (C12) * above (Be 8 + =).

n m can be obtained from

n,'_. rrZ_-J_L_Zl_/2 ,a'-- eX,,z/_
nl Lb; (2m_) J UUm

where _,e, _ ks the energy of Be 8 a_x_ve 2 =. Thezefo=e,

= n_'r];._._),.73/2 b e'x,, _/k_

NOW,
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and

n, - n_n, [h/_(a,+_l_-,l13/2 ___
L21"r mlm m kT ..I U_la s

-_,,,/kT
e

= n*aF2M_Q3F2m_L-'k'T'-JLm_ _ _3/2 L_jj['sml-]3/2 . _.I_,i,e-(7"s 'm+Xm' _ )/kT

= 8_ _6(3)3/2 kT

(ml kT)S nl s e"x

where X - _,s + _,, " energy of C 12. above 3 _'s, and where

wl = ws " I. Now, from the uncertainty principle,

where 7 is the mean life. The

rate of formation of C 12 per C 12. nucleus per second is

given by

Actually, we should use

l"y I'(%

instead of l_'y to take account of the

fact that there is leakage. Therefore, the amount of C 12

_ormed per cubic centimeter per second

I"cz+l"Y

= ee -'e {3)3/2 lz"y %h .a e-X/k_
(m_ kT)' _y+ l"o.J

Suppose we wish to calculate a rate for the formation of C 12

by an = particle reacting with the system composed of two
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other alphas. There are three ways of choosing the odd

alpha particle, so the rate is

rs_ = Ps_ n l
3 '

and

PS_ =

(m _i kT)S k/'-7+Pc_

which is the reaction rate per alpha particle. If we write

nl
= px=

4 %-

where N o is the Avagodro's number and x_ is the fraction by

weight of s-particles in the mixture, then

Ps_ - m_ (kT) s ' k.I'u+l"yJ

•, 5.92 xl0 -7
(Pxa.)= exp _- 4T4--'3_ sec -I

Ts s s

The C 12(_,Y) 016 Reaction

The nonresonant reaction C 12 (_,¥)016 is the means by

which C 12 produced by the triple alpha reaction is destroyed.

The energy level diagram of 016 is as followss
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The threshold for the reaction at zero bombarding energy

is 7.1615 Mev. While this reaction is nonresonant, it is

close to several resonances, all of which, in principle,

can be formed by combining an alpha particle with C 12.

There are restrictions on spin and parity of the compound

states that can be formed. The alpha particle and the C 12

nucleus both have zero spin and even parity; to form a state

of odd parity, the parity of motion between the alpha particle

and the C 12 must be odd, i.e.s the relative angular momentum

must be odd. For example, an s-wave alpha particle bombard-

ing C 12 would form a state 0+; it could not form any O-

states, if there is one unit of angular momentum in the

motion of the bombarding particle, it could form a state

1-. Similarly, states 2+, 3-, 4+, etc. could be formed

by bombarding particles possessing larger angular momenta

with respect to the target. Only half of all the possible

spin-parlty combinations are allowed for polsible resonances

in reactions of this kind. We notice that all the first

excited states of C 12 can be formed in this way, so, in

principle, the reaction could take place in the energy region

of the tails of these levels. We need consider only the

tail of the nearest level (the I- level) because it has the
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largest width for radiative decay to the ground state. Off

resonance, the reaction cross section contains the product

of the alpha particle width and the gamma ray width. We are

interested in which of these levels will have the largest

value for this product. For a given energy, the greatest

barrier penetrability c_c_,,_s for _ !o_.._st ,_,,,I._ moment,_

a larger barrier penetrability means a larger alpha width.

Also, the i- state can decay to the ground state of 016

by emission of electric dipole radiation, which ordinarily

has a greater intrinsic width than any higher multipole

radiation. The 2+ state would decay by electric quadrupole

and the 3- by electric octupole radiation, and these decays

are therefore less probable. The 0+ state cannot decay at

all by the emission of a gamma ray, but decays predominantly

by the emission of electron-positron pairs, and consequently

this decay rate is very slow.

There is another point to consider here7 016 is a

self-conjugate nucleus, i.e., it has the same number of

neutrons as protons. This would not favor the i- state

(7.12 Mev) emitting electric dipole radiation because E1

radiation is intrinsically inhibited in self-conjugate

nuclei. However, the radiation width has been measured,
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and the El transition is stronger than would ordinarily

be expected for self-conjugate nuclei. The radiation width

for this level is

ry = 0.066 + 30_ ev.

We now need to know the alpha width for this level

to evaluate the reaction rate for nonresonant reactions, and

we shall use the alpha particle model to estimate this width.

Generally speaking, the alpha particle model is poor, but

if it is valid for any nucleus, it is valid for 016. In

this model 016 is an =-particle tetrahedron for which one

can calculate the normal modes of vibration. Fortunately,

the 7.12 Mev level is one of the fundamental identifications

in this model. J.K. Perring (unpublished, private communica-

tion) has developed wave functions for these states. On

his model, _ emission from the 7.12 Mev state is "allowed",

and therefore the a-width is expected to be a large fraction

of sum-rule limit. We assume the reduced width is

y8 = 0 I he/mR.°

With this assumption, the number of reactions per cm s per

sec

U
1.33 X 10 "13

T,'(t+0.t
0

n_ ns ex_- Tei/_69"18_
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where n_ is the number density of the alphas and ns the

number density of the C 12 nuclei. The slight variation of

this expression from the usual nonresonant form represents

an allowance for the variation of the nuclear cross section

factor with energy due to the nearness of the 7.12 Mev

level to the thermonuclear bombarding energy region.

Let us note explicitly that this alpha particle width

is the single important parameter that remains to be measured

before we have complete knowledge of the behavior of the

helium-burning reactions in stellar interiors.

016(a, v)Ne 20

The next reaction is the capture of alpha particles by

016, i.e. ,016(_,7)Ne 20. The level diagram ks as followss

Until recently, the close upper pair of levels had been

measured as only one level. The sum of the masses of 016
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plus alpha particle is 4.73 Mev7 the level at 4.97 Mev is

only some 240 key above this. Calculating the optimum

bombarding energy for these alpha particle reactions, we

find that it is of the order of 200-300 kilovolts. It

would seem that the 4.97 Mev level would give an enormous

resonance for this reaction, but recently it was discovered

that this state does not have the right spin and parity

to be formed by the combination of an _-particle and 016 .

The next higher states, at 5.6 and 5.8 Mev, do have

acceptable spln-parity combinations. For the 5.631 Mev

level, we have the following experimental information_

(2&+l) _ . 0.003 + 0.002 ev

and

r
0.07 + 0.01

Therefore

? - 6 + 4 x 10 -3 ev

- 4 + 3 x 10 -4 ev
7

For the 5.80 Mev level, we know that
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< 16 ev (sum rule limit)

2 ev, probably.

If one assumes that _Y is of the order of 10 -2 ev, then

~ 0.,03ev.
F

For T
e

< 2.1, the nonresonant rate dominates, and

V3

P = 4.5 x 109 - 37.2/To T_°X'7"/

where x_refers to the fractional abundance of 016 by

weight. For 2.5 < Ta < 8, the 5.631 Mev state dominates, and

p-6.3
x 10 2 " 45"9/To T_TT

a

Note that there is a gap in which the changeover is occurring.

One could proceed to the next step, Ne 20 (_,y) Mg 24 but
l

as we shall see, such reactions are not important.

Now let us consider the products of the helium reactions

we have discussed. If ,one has helium gas, compresses it,

heats it, and allows then reactions to occur, what is

the result? We write the rates of reaction (per cm a per sea)

as

30, "-, C 12 q;nt s

cl2(a y)016, qs n_ns

016 (=, Y) Ne 20 q4 n_ n4
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Then,

8.70TXa i0"54 /'-44.3>ql = - exp_ Te

(l+0.16Ta-2/_)s "_, T 3T
8 •

q4 m

. 1.67x10 -21
n1_-- exp_-105"5_, Ts>2 5
Te 3/2 • "

Given these expressions, the differential equations take

the following form

dn I = _3qlnla
dt

- q3n_n s - q4n_n4

d_ m

dt ql n_ 3 - qs n_ ns

dt
qsn_r_ - q4n_n4

= q4n_n4
dt

Each 3= reaction releases Q - 7.281 Mev or 1.165 x 10 -5 ergs.

We shall start with a pure helium gas and relate the various

solutions of these equations to the initial rate of energy

generation in this gas which is

¢ : ql _o 3 Q

= 7.33 X 1064 pSq_ erg/gm aec

where n_ is the initial abundance of alpha particles.
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The helium concentration has been plotted versus pro-

duct abundances for this helium gas model, in terms of the

qs and qa The q's are the reaction
two parameters _ _ .

rates we have been discussing, and are functions only of

temperature, not density. We shall consider a wide range of

values for the first parameter, and for each value in this

range we shall consider two values of the second parameter,

i.e., 0.1 and 1.0. These graphs were made using the assumption

that the temperature and the density remain the same while

helium burning progresses (otherwise the parameters shift

slightly during the course of the helium burning). Closer

examination reveals that this assumption is not bad.

In Figure 14.1, with the smallest values of the parameters,

we note that the C 12 pr_uatlon ks initially linear, but after

most of the helium is _nverted, the C 12 abundance passes

through a maximum and then production of 016 and small amounts

of Ne 20 becomes significant.

In Figure 14.2 we change the second parameter to 1.0.

The C 12 curve is hardly altered, but now the end-point

concentration of Ne 20 is greater than 016. The result of

helium burning is still essentially the formation of C 12.

In Figure 14.3 the first parameter is increased to 1.0 and
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the second is again 0.i. The changes are apparent; C12

is the dominant nucleus only in the earlier part of helium

burning. Later C 12 destruction is more important and large

amounts of 016 accumulate.

In Figure 14.4 the parameters are both 1.0. The C 12

curve is nearly the same as in the previous case, but

16
now 0 destruction is more important in the later stages

of helium burning, and Ne 20 is finally the most abundant

nucleus.

In Figure!4.5 the first parameter has been increased

to i0 and the second is again 0.i. The changes are drastic;

C 12 is the dominant nucleus only in the earliest part of

helium burning. C 12 destruction becomes important and

large amounts of 016 accumulate until, at the very end of

helium burning, the destruction of 016 becomes more important

and we accumulate some appreciable amounts of Ne 20.

As we are beginning to expect, in Figure 14.6 we see

J

that increasing the second parameter to unity changes the

12
C curve very little, but the larger rate of oxygen

destruction means that the amount of

end of helium burning is very small.

016 remaining at the

The formation of Ne 20

dominates the later stages of helium burning, leaving almost
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all of the material in the form of Ne 20.

In Figure i_.7, the upper parameter is increased to

i00 and the lower one is down again to 0.1. Destruction

of C 12 rapidly becomes the dominant process and the total

abundance of C 12 never becomes a significant quantity.

16

0 formation dominates, but toward the end of the helium

burning process 016 destruction becomes importan_ and

finally some significant quantities of Ne 20 are formed.

In Figure 14.8 the first parameter is again 100 but the

second parameter is now unity. T--here is little difference

12
in the C curve, but the larger rate of oxygen destruction

results in the transformation of essentially all of the helium

20
into Ne in the last stages of He burning.

Figure 14.9 is a density-temperature diagram which shows

under what circumstances we can obtain some values of the

parameters which we have just used. The solid lines show the
q

combinations of density and temperature at which a pure

He gas would generate a given energy, neglecting any

further reactions An the helium burning chains. The dashed

lines are evolutionary tracks that we may expect for stars

of one solar mass or ten solar masses, according to the

relations we derived in an earlier sections(We assume that
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the densities throughout the star are such that the

center does not become highly degenerate). Stars of

approximately one solar mass will generally increase

in overall luminosity after they burn out hydrogen at

the center, and go into the red giant region. Consequent-

ly the average energy generation at the center will go

from roughly 20 ergs/gm, sec. for the sun into the range

of a few hundred ergs/gm, sec. in the helium burning

stages. An energy generation range of about 102 to 104

ergs/gm sec should take place at a density near 10 4 grams

per cm 3 and at a temperature rather close to 1.2 x 10 8

degrees Kelvin. We can further state that a helium

burning energy source for a star of one solar mass will

depart from these conditions in the direction of higher

temperature and lower density. Therefore we can expect

to have temperature T 8 of 1.4 to 1.6 with densities of

the order of perhaps 103 grams/cm 3 or so for such helium

burning shell sources.

For a star of i0 solar masses we expect a much higher

energy generation rate per gram, perhaps in the range I06

or 108 ergs/gm: sect this would mean a temperature somewhere

around 2.0 to 2.2 x 108 OK and a density between 102 and
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103 gm/cm 3. This is the case where we have energy generation

at the center of the star. If instead there is a highly

condensed core with a shell energy source in the star,

we should change these conditions along the diagonal line

directed toward the lower right-hand part of the curvel

then the temperatures will be around T 8 - 3, perhaps, but

the density will stay about 102 gm/cm 3.

Figure 14.10 shows the values of the first parameter,

, corresponding to various rates of energy generation,
Hs---

q_r_

plotted as a function of temperature. The evolutionary

tracks for star, of one solar mass and ten solar masses

Sa_
are shown. For a given energy generation rate,

q, nio

increases with an increase in temperature.

Let us consider a star of one solar mass.

ture of helium burning near 1.2x108 degrees Kelvin and an

energy generation rate around 102 to 104 ergs/gm, sea,

Sa___
should lie in the range of 1 to i0. The previous

ql r_e

abundance curves show that in such a case the earlier parts

of helium burning will result primarily in the formation

of C 12 but the later parts of helium burning will have an

overwhelming production of 016. The range of the parameters

i8 sufficiently uncertain so that one could not say whether

With a tempera-



-241-

_o "o

/
/

/

0//
/

/

/
/

t
/

/
/

/
/

Q
.,. N ""

_o _o o - b 'o

olu 'b/=b



/

-242-

to expect comparable amounts of C 12 and 016 at the end of

the helium burning process or large amounts of 016 and

negligible amounts of C 12. If we recall that for a heliu_

burning shell source the temperature will increase as also

will the rate of energy generation per gram, we see that

the value of Sa_-- will remain in the general range of
q_o

i to I0. Thus the results for a helium burning shell are

roughly the same as those for helium burning taking place

at the center.

In the case of a star of ten solar masses, i.e., energy

generation around 106 to 108 ergs/gm, sec. and temperature

T8 around 2.0 to 2.2, the value of q_ is clome to 0.i. If
q_n_

this second parameter is closer

amounts of C 12 and 016 are left.

to unity then comparable

We shall |so that it

is probable that the noeond parameter is small; consequently

the beet fuss| we can make at the moment regarding helium

burning in a massive |tee is that it will predominantly form

016 but is likely to leave _alrly small amounts of C 12. In

this eaeo aloe, we do not ohango the gonozal conclusion much

by oonaidoring a |hell gouroe.

Figure i_,ii JhOwJ the eoeond parameter

function of temperature for various ratee of energy generation.



-243-

I I I I

I0"

0
m

m

0"

RG
GM.-SEC

Evolutionory
Trocks

I0-'

1.0 L6 L8 2.0 2.2 2.4
TEMPERATURE (10' °K)

FJ.guxe 14.1].



-244-

Considering the dotted evolutionary trackfor stars of one

solar mass, we see that fmr a temperature of 1.2 x 108 OK

and a moderate energy generation rate the value of _.
ql _0

is close to 10 -7 . This is truly negligible and indicates

that no significant amount of Ne 20 would be formed under

such conditions. If we consider the increase in tempera-

ture due to using a shell source, we find the value of

q4_!___ only 10 -6 or 10 -5 , and still negligible.

q_n_

In the case of ten solar masses, the situation

is not essentially changed. For a temperature T 8 around

2.0 to 2.2 and an energy generation of 10 6 to 10 8 ergs/gm.sec.,

then the value of _ lies near 10 -5. If we now consider

q,_r_

a helium burning shell source, the temperature would increase

as would the energy generation, and an extrapolation gives

values of ___of about 10 "1 by going a bit beyond 3x108 °K.
q_n_

Such high temperatures may be obtained in the last stages

of helium burning, hence it is possible that under extreme

conditions in massive stars with helium burning shell sources,

the value of _ may rise into the range of 10"I/_nity

q_n_
in the later stages, and appreciable amounts of Ne 20 can be

formed. Unlesswe consider such extreme oonditions, it seems
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formation is small during the helium burning

This lead. us to the general conclusion that

under the great majority of condition, likely to be involved

in stellar interior, during the course of evolution of

ordinary stars, the hellum_rning process is likely to

form large amounts of 016 and negligible amounts of Ne 20.

It may or may not leave significant amounts of C 12.

We must temper these conclusions by the observation that

they are based upon an assumption regarding the reduced

_-particle width of the 7.1 Hey state of 016_ consequently

we should be prepared for changes of the order of a factor

of I0 in the flr.t parameter _when the reduced width
q:n_

is eventually measured. Using the graph, presented it

should be _..ible to eeewhat change, thla will produce

in the conclusions we have reached. One remarkable thing

that we have learned, however, is that the ratio of C 12

to 016 should not be greatly changed as one goes from

typical condition, for helium burning in the center of a

star to typical conditions for helium burning in a shell

source surrounding the center.

Pycnonu_lear Reactions

The general theory of pycnonuclear reaction, has
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previously been discussed (p. 108-115). Detailed discussion

of the calculation of these pycnonuclear reaction rates may

be found in the author's paper on the subject (A.G.W. Cameron,

Astrophysical Journal, 130, 916).

Figure i_.12 shows numerically calculated reaction rates

for C12(_,y)016 at 5xl06 OK for a variety of densities as

function of _-particle energy. The ordinary thermonuclear

reaction rates without electron screening corrections of

any kind refer to an effective zero matter density_ under

such circumstances the optimum bombarding energy at which

the reaction takes place is many times kT. The arbitrarily

normalized curves show <0v>N(v) as a function of _-particle

energy, where N(v) is the number of particles at that

velocity. At zero density the curve peaks around 40 kT;

the reaction rate is extremely small so far out in the

tail of the Maxwellian distribution. The total rate goes

as the integral of these curves_ for increasing densities

the change in the reaction rate due to the pycnonuclear

effect is strongly axhlbited. For particles under conditions

of high electron screening, the effective bombarding energy

is high. At a density of 107 it becomes a sizeable contribu-

tion all the way down to zero energy, and for higher densities
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the curve starts to approach the Maxwell distribution of

velocities. Since v N(v) is the Maxwell velocity distribution,

we see that the probability of a reaction taking place is

becoming almost independent of bombarding energies. This

effect occurs under extreme conditions of high density

and low temperature.

Figure 14.13 shows the logarithm of <or>, i.e., the

logarithm of the reaction rate, for different temperatures

as a function of density. Remember that the number of

reactions per cm 3 is just the reaction rate times the

product of the number densities of the particles involved.

The reaction rates increase, especially for lower tempera-

tures, as the density increases.

Figure 14.14 shows the combination of temperature and

density that we require in order to have a given rate of

energy generation from this reaction. The fact that the

curves turn downward at a density of 108 gm/cm 3 is due to

the assumption that the mixture is half helium and half car-

bon. Suppose a star is in an advanced stage of evolution

and is trying to shrink to a white dwarf state without

raising its central temperature too high. For such a range

of temperature s , a star could not shrink to much more than
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107 gm/cm 3 without trying to burn helium and carbon

together, and a central density

atypical of white dwarf stars.

of 107 gm/cm 3 is not

Consequently it must

always be considered as a possibility that there will be

some small amount of energy generation occurring in the

interiors of white dwarf stars. The rate of energy

generation in such white dwarf stars might not be sufficient

to cause disruption but nevertheless it might maintain

luminosity in such stars for periods of time longer than

the time in which one expects them to cool.

we consider next the N14(_,y)FI8 (6+ _)018 reaction.

We do not know the reaction rate for this reaction. There

is a level at 4.651 Mev which is 230 key above the sum of

masse8_ this would be resonant with the proper combination

1+of spin and parity. N 14 has a spin of and the _-partlclo

has a spin of 0+7 consequently by varying the relative

orbital angular momentum of the N 14 and the _-partlcle,

we can form any combination of spin and parity except 0%.

Even in the case this level is 0+, there are levels in the

F 18 nucleus which are about i00 key apart in this region,

so that there would be a resonance slightly higher. We

shall assume that the 4.6 Mev level is 2+ (not taking the
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most favorable case), which gives a thermonuclear reaction

rate

-5
p = 1.7 x 10

taking the reduced width

72 .

) ooo-I.

1% of maximum.

Figure 14.15 shows this reaction rate for different

temperatures as a function of density. The initial concentra-

tion was assumed to be half nitrogen and half helium for

calculation, but this is not an especially sensitive restric-

tion. There are quite significant rates of energy generation

at 70 or 80 million degrees. This indicates that this

reaction may trigger the helium burning reactions in the

dense central core of a star of about one solar mass

(Schwarzschild helium flash process), rather than the triple

reaction. The dashed line indicates an energy release of

i erge/gm.sec, in a gas with equal parts of N 14 and He 4.

Figure 14.16 is the ignition diagram for the

14
N (_,y)F18(B+ _)018 reaction. The temperature is plotted

for various energy-generation rates and shown as a function

of density. The obvious kink corresponds to the switch

from resonant to nonresonant reactions.

Figure 14.17 and l_.18 are corresponding graphs for the
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triple-alpha reaction. Note that in this case we have

the product of two reaction rates; we consider three

cases: the triple _ reaction i8 fully resonant, partially

resonant, or completely non-resonant. By fully resonant,

we mean the process we have previously discussed7 by

partially resonant we consider Be 8 in its ground state

interacting with an _-particle in the non-resonant tail

of the 7.656 Mev level of C 12. The dashed line indicates an

energy release of 1 erg/gm.sec, in pure helium.

We call the reaction nonresonant if we have Be 8 formed

in the tail of the ground state at low bombarding energie_

reacting with =-partlcles in the tail of the 7.655 Mev

12
level of C . The kinks in Figure i_.18 correspond to

transitions between these reaction modes.

The net result of these considerations 18 that we

cannot expect helium gas to endure for long at densities

much above 108 gm/=m 3, and that N 14 can probably act as

a trigger for the helium flash process.

M_.or Reaqti_,_s

Now we shall conalder some of the minor reactions (by

minor we mean then which are not on the main line of the

helium burning pzoceseee). In pzaatlcally all caeca the

reactions are multiply-resonant, but we have not sufficient
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knowledge of the nuclear physics of the relevant nuclei

to evaluate in detail these resonant contributions.

_onetheless, the systematics of level densities indicate

that there should be several levels in a typical Gamow

thermonuclear peak.

Capture of an _-particle by

18 01Bof 0 . Then the reaction (_

N 14 led to the production

,y)Ne 22 may occur. Indeed

this reaction should occur near the middle of helium burning;

its reaction rate is probably somewhat faster than C12(_,7) 016.

One expects it to be multiply-resQnant, but our ignorance

of the levels does not allow us to evaluate this reaction

rate properly. However, the fact that this reaction should

take place in the middle of the helium burning process has

immense significance for some of the later reactions, as

we shall see.

A set of reactions most significant in terms of element

formation are the neutron sources:

C 13 (a,n) 016

017 (a,n) Ne 20

Ne 21 (a., n) Mg 24

He 22 (a., 7) Mg 26

{ Ne22(cc,n) Mg 25

Q -2.215 Mev

Q -0.588 Mev

Q - 2.555 Mev

Q - 10.616 Mev

Q --0.482 Mev

The C13(e,n)016 reaction is nonresonant b_t fast. HOwever,
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at the end of the CNO cycles we expect to have little of

the original CNO nuclei left in the form of C131 hence

this process should produce a very small yield of neutrons

early in the helium burning process. Similarly, the abundance

of 017 is probably very small at the end of the CNO cycles.

Again, the reaction _hould =-wereasonably fast, but the

neutron yield would be very small. The Ne21(_,n)Mg 24 reaction

is not so fast_ it should be multiply-resonant and will take

place primarily during the later parts of the helium burning

process, particularly if the temperature is as high as

200 million degrees. We have seen that for stars of the

order of one solar mass helium burning does not take place

above 1.5 or 1.6 x 108 degrees. In the more massive stars

the helium burning temperature is well beyond 200 million

degrees. Insofar as these reactions are concerned, helium

burning should proceed with these minor constituents, in

the more massive stars, while in the lighter stars, the chance

of neon isotopes taking part in helium burning is very con-

siderably reduced. We need a temperature T 8 _ 2 to have

_-particles react significantly with Ne22_ at that tempera-

ture the optimum bombarding energy is in the vicinity of

450 Key. Three resonances below this and three above are

known, but the properties of these levels are unknown.
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The significance of these reactions in terms of neutron

production is as follows: C 13 and 017 will have low

abundances, and Ne 21 will have a questionable abundance.

Significant amounts of Ne 20 are probably present in the

cosmic mixture of elements from which the star is formed.

For temperatures the order of 50 million degrees, in

hydrogen burning shells, most of the Ne 20 is depleted into

Ne 21. It is likely that Ne 21 may advance further by capturing

a proton to make Ne 22 or even Na23; this being the case, Ne 21

may or may not be a significant source of neutrons.

However, we do know that the CNO nuclei, the third

most abundant group of nuclei present in the natural

distribution of the elements, are left primarily in the

form of N 14 at the end of CNO cycles. Alpha capture occurs

early, making F 18 and then 018 , and near the middle of

helium burning 018 should advance up to Ne 22. This means

that most of the initial CNO nuclei are in the form of

Ne 22 in the later stages of helium burning; this in turn

means that the Ne22(_,n)Mg 25 reaction is probably the

principal source of neutrons produced on a slow time scale

(the time scale characteristic _f thermonuclear reaction

times in stellar
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interiors under these conditions). We do not know what

fraction of the CNO group will actually give up neutrons

by these processes, but it would not be surprising to find

half or more of the CNO group yielding neutrons•

For completeness we write the remaining reactions:

NI5 l_,y) _19 Q = _ n_ M_v%-- _ "E • %J.J.,_ • _'"

F 19 (_,p) Ne 22 Q = 1.675 Mev

Na 23(_,p) Mg 26 Q = 1.826 Mev

These do not seem to be especially interesting from an

astrophysical point of view.
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15. Neutron Capture on a Slow Tim `=_ Scale

We have seen that 2as a result of helium burning2neutrons

can be produced in stellar interiors at temperatures of the

order of 1 to 2 x 1080K. In particular the cl3(_,n)016 reaction

produces neutrons at temperatures near 1 x 1080K, and the

Ne22(e,n)Mg 25 reaction near 2 x 1080K. We may now inquire as

to the period of time in which the neutrons are produced.

In a star of roughly one solar mass the helium burning stage

may involve something on the order of 108 to 109 years. The

later stages in which most of the neutrons are produced may

require 107 or 108 years or even much less for more massive

stars. Under such conditions we observe that the time between

successive neutron captures will be large in comparison to other

time scales of interest in our study of stellar interiors.

The mean time between neutron captures by a typically heavy

nucleus can range anywhere from 1 to 105 years. Burbidge,

Burbidge, Fowler and Hoyle* describe this process as the 's'

process of neutron capture, where the 's' simply stands for

slow. We will term this process simply neutron capture on a

slow time scale.

It is possible to determine

a rather unique neutron capture path, provided that we have a

,, , _- .....

* BBFH, Rev. of Mod. Physics, 2__9, 547 (1957).
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knowledge both of the time scale of the capture processes,

and of the beta decay half-lives of the nuclei in question.

The upper end of the capture path is terminated at Bi209_ as

neutron capture beyond this nucleus leads to alpha-particle

emitters with half-lives very short compared with the neutron

capture time scale; hence neutron capture products accumulate

as lead and bismuth isotopes.

In order to observe the effects of these neutron captures

on a slow time scale, we shall present here the results of a

calculation by the author. These results were obtained for a

kT energy of 11 key (_i x 1080K). It should be noted here

that the results presented are correct Only if one assumes

that extra neutron removal reactions such as N14(n,p)C 14 do

not take place. If Ne 21 or Ne 22 is the main neutron source

this difficulty will probably not arise, because the N 14 will

be destroyed by helium reactions at a lower temperature than

that at which the neutrons are produced. In this calculation

we consider that all neutrons are captured by nuclei with mass

numbers 20 or higher.

Solution of the Abundance Equations

The initial abundances of the nuclei that were assumed

for these calculations are shown in Figure 15.1. The

capture cross sections that were calculated are . shown in

Figure 15.2.
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If the abundance of the nuclide with mass number A

is N(A) and the number of neutrons injected into the abundance

unit is N(n), then the rate of change of the abundances is:

= a(A-l) -N(A)
dN(n) ZN_

The abundance equations were integrated with the aid

of an electronic computer. All nuclei were initially considered

to lie on the capture path except certain ones with large

abundances such as Fe 54 and Ni 58, whose rate of feeding into

the capture path was followed independently.

The abundances produced by the capture of 5, i0, 15,

20, 30, 50, 80, and 125 neutrons (injected per initial silicon

atom) are shown in Figures 15.3 through 15.10.

The neutrons are initially captured mostly by the

nuclei in the iron peak, centered about A = 56. As the capture

progresse_ a few nuclei capture many neutrons and are moved

up to high mass numbers. This "tail" rapidly grows until

the abundances of the heavy nuclei become much larger than

the initial values. The ratios of the evolved to initial

abundances of thesenuclei will be called their overabundance

factors.
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After the injection of 5 neutrons per initial silicon

atom the nuclei around A = 70 have become quite overabundant,

but heavier nuclei have only small overabundance factors.

By I0 neutrons the heavy nuclei have become overabundant

by factors of the order of i00. The overabundance factors

continue to grow as more neutrons are added until by

50 neutrons factors of many thousand are reached. For still

more neutrons the overabundance factors decline. They

reach a minimum for 125 neutrons. At this point the nuclei

originally in the iron peak have been transformed into lead

and bismuth and the overabundance factors are maintained by

capture in lighter nuclei.

The reason that the neutron capture does not build up

nuclei heavier than lead and bismuth is that above bismuth

the capture path enters a region where the nuclei have

extremely short half-lives for alpha-particle emission.

Hence any nuclei which get that far immediately decay back

to lead isotopes.

It should be noticed that at all times during the

neutron capture the general level of abdndances below A = 140

is between a factor of 2 and a factor of i0 higher than the

general level above A = 140. This is a very significant point to

which we shall refer when analysing the cosmic abundances

of the nuclides.



-268-

• o

O 0 • O

• •

** _

T _

O •

II I I III I I II1 I I Ila I 1 lln 1 I lit I I Ill t I Ill J l IlL l l

_o "o % °o "o "o °o - _o

S3ONY(]NFISV 3AIIV73_I

0

8
0a

0

0
aD
i

0

0
_D

0

0

LU

o
i ('_

0
'" Z

0

Io O0 _--

,0 O_r_

o _

0

0

0

0

0

0

0

O

'0



-269-

I [ " ] 1_ | |T Y T T TT T T L --
] |ll T | it] l 1 1T I t 1 TIll 1 7[ "I lwt l _ _" _ : ,,, eO

Ill
o.._

ao
u.lI--
i._<[
(,3
b.lz
IoO
Z(3

i1.} --1

Zff)
12)
11_ ---J

W _
Z z

0

0

I-'------_ , .e. o
_-_ ._ . o

&' o

"..:.
0 °

o _

ee _

--
eO

Q • •

OQ

• • •

°_ _.

e e
• •

B

0

i_ J I Ill I I ll_ I I ill J J Ill t t l]I t L ILl I i It L I . I IIi L I

_o "o % "o % % o - "o %

S30NVONNBV 3A I IV"IS _

CO

0
I iw..

0
q_

0

i 0

OC
0

'-_ Ld
i

'i0 rn
(,,,j

0

o Z
0

o Or)

a_ or)

o<_

0
I'.-

0
f,D

0

u')

0

0

0
{'w4

0
i

0

-.,-I-

L_

,-I

Iw

.,-I

r.r.,



-270-

n

I

F

-8

I I I
it,,

0

! I''

W

o0
Wb-
b..,_
0
wZ

ZO

u._ -.I
m

Zff)

0..1

i_.'_
m

:_ I-..
w--
Z z

if)

o

• •

_Oo o

"} :8
...-

".• • IJ_

• ,_,,4. o cO

, io
eeo e° 0 Z

. • • ° o • ° -- J,,,I

• OI •

• • •
• •

• •
°7

• •

o

• •
o

Ill n ! ltJ ! t Itl J t ltt I I 111 I t IJJ t t lit , l 1,_ _ J

"o "o "o "o "o o - "_o "'0

S3ONV(INrlBV 3 A 11V73_

o

o
14-

(,f)

CO') "_

<_

0
_D

o

0

0

o

0

o



-271-

W

a•
wl--
i... '_
0
wZ
--'_0
zo

Zm

0._1

_1.-.

m

0

% •#

l• • j • |A • •

0
m

=.. . I .... 1.... I .... I .... I,..

o 0 0 0 0 0

S3ONV(INnBV 3 A 1lV73_

'o

o
o

o

o
(3O

o

o

o

o
N

o

o



-272-

m ¸

r

t i Jl i s

(_ " (0

0 o •

0 o

[

1

rr

LJ,J

O3

::3

.,-,I

0 (,/9 r.=

U3

O

0

0
u_

0

0

o
N

o

S3ONVONn8V 3 A 1 lV73_

I I I I I 0

.ipi _ . II_l . N ...... ;..- 'TI[_ N_0 .... .,. 0 0 O . . '__ ......" " '0 ....



-273-

I,,.

o
i

IX:
LLI

oO
LI.I I'-

. i... _
0
WZ
"_0
ZO

03 -'1

ZO3

O_j
n-_
I--_
:=)I--
LU--
Z z

0
143

O O _ •

°° _°° •

o_,.

008

., .-':;

Oo,. °o

6 •
, 0 0

O_ • o"

• •

Ill -_

LI | l

°o
q. _ N -. T O

_0 0 0 0 0

S3ONV Cl N N8V 3 A I lV73 I=1

o

w

o
IZ::

__,.,
o ,.n

o
o ¢n._

=E
o
o

o

o
,¢

o
let

o
Og

o

.L.-.-- 0

'0



-274-

I

go

• •
• •

V T

o,

0

Ooql_ •

0

°°° 0%0 '

•o o ° iO•. o°go 1

°o_ 0,p...

!ii °,__

0
.__

• gig O
| • 0

-:; ,_ ,,,

0
Od

0

I_,A _ 0

To ,.°0



-275-

"o
m

• •
• 0

o

0

o

0

o

o
m

"o "o "o "o o - To ,'o

S3O.NVONnSV 3AIIV73_I



-276-

16. A New Table of Abundances of the Elements in the Solar System

A.G.W. Cameron

Belfer Graduate School of Science

Yeshiva University

New York, New York

and

Institute for Spac e Studies

Goddard Space Flight Center, NASA

New York, New York

Abstract

A new table of the abundances of the elements, presumably

characteristic of primitive solar matter, has been compiled.

It is based as much as possible on abundances in Type I

carbonaceous chondrites. Other sources, used where

necessary, are ordinary chondrites, solar atmospheric

abundances, and solar cosmic ray abundances. Eight elements

were interpolated using criteria based on the theory of

nucleosynthesis in stars. A discussion is given of s_ne

features of the abundance table which should be taken into

account in theories of nucleosynthetic processes.
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A basic and necessary step in the development of theories of stellar

nucleosynthesis was madeby Suess and Urey (1956), who selected astro-

nomical, meteoritic, and terrestrial element abundancedata and produced

a table of cosmic abundances. Most of the abundancedata used by Suess

and Urey _ere of poor quality, so these authors adjusted and interpolated

the abundancesofthe elements to produce a smooth variation in the

abundancesof nuclides with odd mass numbers. From the resulting

abundance tables it was then possible to identify a numberof different

nuclear processes which could probably occurin stars and which would

produce the.characteristic features of the Suess-Urey table (Burbidge,

Burbidge, Fowler, and Hoyle 1957; Cameron1957).

The writer (Cameron1959) later readjusted someparts of the

Suess-Urey abundancetable making use of the hindsightgiven by the

identification of the processes re@ponslble for nucleosynthesis to

use additional criteria for the adjustment of the abundances. Apart

from minor adjustments, the principal predictions were that the Sr/Zr

ratio shouldbe inverted, the rare earth abundancesshould be strongly

modified, and the abundanceof Pb should be greatly increased.

Subsequentmeteoritic abundancemeasurementshave confirmed the first

two of these points and have shownthat the Pb abundance lies between

the two values suggested.

In subsequent years a great deal of high quality meteoritic

abundancedata has been obtained by radiochemical techniques, and

interest has arisenin the differences in abundancesbetween various

meteorite classes. The writer (Cameron1963) made a new abundance

compilation based to a muchgreater extent than previously on good

meteorite abundancemeasurements. Although this table was not published,
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manyreferences to it appear in the literature, and hence the numbers

obtained at that time have been included in Table I for the sake of the

record.

Anders (1964) has pointed out that there are systematic differences

between the abundances of certain elements of somewhat greater volatility

between abundance classes; he postulated some mechanisms to account for

this. These ideas have recently received additional discussion (Larimer

and Anders 1967). These authors and others have pointed out that the

least element depletions have occurred in Type I carbonaceous chondrltes.

Taking the point of view that it is probably easier to obtain uniform

element depletion factors than uniform enrichment factors, the present

writer hag constructed a new abundance table based as much as possible

on measurements in Type I carbonaceous chondrites. These meteorites

are thus assumed to be the most representative source of solar sy_em

abundance data for which high quality measurements can be made.

The resulting llst of abundances is given in Table I as Cameron

(19671. The sources of the abundances and the assumptions made in

assigning values to certain elements are given in the notes to Table I.

It may be seen from these notes that the majority of the nonvolatile

elements now have abundances based on Type I carbonaceous chondrlte

measurements. In some cases i_ has been necessary to use abundances

measured in ordinary chondrites. The volatile elements are based on

solar photospheric and cosmic ray abundance data; they have been

normalized to the meteoritic data using the solar photospheric

abundances of ten nonvolatile elements. There remains a significant

uncertainty in this normalization factor, perhaps amounting to a

few tens of per cent. Only eight elements have now been interpolated
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on the basis of nuclear regularities.

It should be noted that this procedure has selected a high value

of the iron abundance. This abundance has been a long-standing problem,

since the solar photosphericabundance of iron (Aller 1961) is

considerably lower than the meteoritic value, and the oscillator strengths

of the iron lines used in the solar abundance determination are claimed

to be of superior quality, w_nese are strong iron lines. Nevertheless ,

it appears that the iron abundance determined from weak lines is higher

than for the strong lines (L. Goldberg, private communication), and

the iron abundance is anomalously high in the solar corona. Hence it

has seemed best to use the meteoritic value. The question of the iron

abundance is of great importance for problems of nucleosynthesis, and

it is important that additional work be done in an attempt to resolve

the problem.

The abundances of individual nuclides corresponding to the latest

adjustment are given in Table If. Also g_ven in this table is a classi-

fication of certain of the heavier isobars as being predominantly made

by a particular mechanism of nucleosynthesis. Thus F isobars are those

which have been made principally byneutron capture on a fast time

scale, corresponding to the "r" prdcess of Burbidge etal (1957).

S isobars are those which have beenmade principally by neutron capture

on a slow time scale, corresponding to the "s" process of Burbidge

et al (1957). B isobars are those which are bypassed by neutron capture

processes, corresponding to the "p" process of Burbidge et al (1957).

A few assumptions have been necessary for the construction of

Table II in addition to those used in the construction of Table I.

Thus the He3/He 4 ratio has been taken to be 3xlO "4 since this ratio is
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usually found in primordial helium extracted from meteorites (Signer

and Suess (1963). The large abundance of Ar 40 in atmospheric argon is

K40,due to decay of terrestrial • the estimate in Table II comes from

At40the consideration that is a product of neutron capture on a fast

time scale and hence should be comparable in abundance to S36, Ca46,

and Ca48. The abundances of uranium, thorium, and K40 isotopes have

been corrected for a decay interval of 4_.5x109 years to make them

typical of the initial solar system; other radioactive nuclides have not

been corrected because the half-lives are long and the corrections

small. The isoto_ic abundances of xenon have been taken from the analysis

of xenon from the Murray carbonaceous chondrite according to the inter-

pretation given by Cameron (1962); this assumes that the atmospheric

composition of xenon is distorted by a fission xenon contribution.

The Cameron (1967) abundances are plotted as a function of mass

number in Figure 16.1 Of particular interest for problems of nucleo-

synthesis are the odd-even ratios among the heavier nuclei and the

sharp and rounded peaks corresponding to closed shells of 82 and 126

neutrons in the process of neutron capture on slow and fast time scales.

The abundances of products of neutron capture are shown separately

for each element upwards from the iron region in Figures 16.2 to 16.5

Nuclides with odd mass numbers _are plotted as solid circles; those with

even mass numbers are plotted with crosses. If an even mass number is

classed as an F isobar, the cross is surrounded by a square; if it is

classed as an S isobar, the cross is surrounded by a circle. These

figures are very useful if one wishes to make estimates of the relative

contributions to abundances of nuclides from the fast and slow time

scale processes.
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It should be emphasized that the abundances of heavy elements which

are now based principally upon good determinations in Type I carbonaceous

chondrites are very satisfactory from the point of view of the processes

of nucleosynthesis. It has been known for a long time that there is an

excellent regularity inabundances of nuclides corresponding to a given

process of nucleosynthesis among the rare earth elements, which are

subject to very little chemical fractionation. This property is now

generally true of the entire distributions of Figures 16.2 to 16.5. Odd-even

ratios vary regularly, being small for fast time scale products and

larger for slow time scale products. One difficulty with previous

abundance determinations has been the small odd-even ratios for the

isotopes of Cu and Zn. This has now been satisfactorily eliminated

because of the higher Zn abundance measured in Type I carbonaceous

chondrites. Other expected regularities as enumerated by Cameron (1959)

are satisfactorily followed.

In Figure 16.6 are plotted the abundance trends of even mass numbers

for three processes of nucleosynthesis: products of neutron capture on

fast and slow time scales, and bypassed nuclei. These abundance trends

have been determined from isobaric abundances and from additional

behavior, such as peaks at closed neutron shells, where it is evident

that the observed abundances are produced primarily by a single process.

One of the striking features of the abundance distribution of the

products of neutron capture on a slow time scale is the fact that _N,

the product of the average neutron capture cross section near 25 keV

and the abundance, is a smooth monotonically-decreasing function of mass

number (Seeger, Fowler, and Clayton 1965 ). Because of local variability

in the neutron caplure cross sections, it may be noticed in Figure 16.6
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that the abundances of the S isobars scatter about a smooth curve.

At present we know much less about the set of astrophysical environ-

ments responsible for the production of the products of neutron capture

on a fast time scale than we do about those responsible for the slow time

scale products. Therefore it is important to examine the abundance data

to determine whether additional boundary conditions can be assigned to

the fast time scale processes. Several features are worthy of note.

The curve drawn through the F isobar abundances is remarkably smooth,

in contrast to the scatter about the S isobar curve. Hence the fast

time scale abundances are not affected by the variability of individual

neutron capture cross sections. Abundancesmoothing processes must have

been operative, either through a contribution from several values of

atomic number Z to each mass number, or through frequent neutron emission

following the high energy beta decays of the neutron-rich final products

of the capture process. In addition, the neutron capture process must

have terminated quite abruptly; otherwise fast beta decays would have

produced only one capture product per mass number, and the final

abundances would have been affected by cross section variations.

The fast time scale product peaks at mass numbers 130 and 195

correspond to closed shells of 82 and 126 neutrons. As discussed by

Truran, Arnett, Tsuruta, and Cameron (1967), it appears that these peaks

are made near the base of an ejected supernova envelope, where the

material has been largely transformed into neutrons. Under the astro-

physical conditions in which these peaks are madel, it is expected that

negligible amounts of intermediate mass numbers will be formed. Yet it can

be seen in Figure 16.6 and from Table II that the abundances

associated with F .isobars near mass numbers 40 and 70 are much larger
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than those in the closed shell peaks mentioned above. This suggests

that there must be a very different fast time scale process in which a

burst of neutrons can be produced and added to pre-existing intermediate

elements. One possibility for producing this situation is the passage

of a supernova shock wave through the helium shell in the presupernova

structure, where rapid (_, n) reactions may be an effective neutron

source.

Also plotted in Figure 16.6 are the abundances of the B isobars. These

can be produced from a pre-existing abundance distribution either by

photodisintegrations which remove neutrons and protons from nuclei,

or by proton capture reactions taking place in a hydrogen-rich region

briefly raised to a high temperature. The first case can arise when a

supernova shock wave traverses a hydrogen-depleted region of the

presupernova structure in which neutrons cannot be produced in quantity

by (_, n) reactions. The second case can occur when a supernova shock

wave traverses the outer hydrogen layer of the presupernova structure.

The abundance distribution of Figure 16.6 favors the proton capture

process. Since this would take place in the outer layers of the

presupernova structure, the heavy elements could at most have been

exposed to the very small neutron flux accompanying deuterium-burning,

and the abundance changes produced by this would be negligible. Hence

one should expect that the abundance distribution of' the proton capture

products would be similar to the superposition of the abundance distri-

butions produced by neutron capture, except that the increasing Coulomb

barrier with increasing atomic number would produce a progressive

decrease in proton capture rates, with a corresponding increase in the

ratio of the abundances of the neutron capture to proton capture
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products. It may be seen that this expectation is fulfilled. In addition,

the abundances of the B isobars are relatively high up to a position

slightly beyond the slow time scale closed shell peaks, beyond which they

fall rapidly. This also would be expected on the proton capture mechanism.

The rise at the upper end of the B isobar distribution is given

solely by an isotope of _ercury. This element was interpolated in the

compilation of the new abundance table, and there is great uncertainty

in the interpolation. The mercury abundance was chosen as high as seemed

reasonable in view of the large amounts of mercury in carbonaceous

chondrites. Hence the reality of this final rise in the B isobar distri-

bution is not at all certain.

I am indebted to Professor E. Anders for a great deal of advice on

meteorite abundances during a period of several years and in connection

with the present abundance compilation. I am further indebted to

Dr. J.W. Truran and Dr. W.D. Arnett for many discussions of the relation

between nucleosynthesis and supernova hydrodynamics which has influenced

the discussion in the latter part of the paper. This research has been

supported in part by the U.S. Atomic Energy Commission and the National

Aeronautics and Space Administration.
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Table

Compilations of abUndances normalized to Si=lO 6

Notes refer to the SOUrces of Cameron C1967). "

8Uess Cameron

z H 4.oox_oZO 3._lo zo

2 He 3.0_i09 2.6xlolO

3 Li 5.Oxlo9
i00 2.ixlo9

4 ]3e 38
20 45

5B 7
24 o.69

6c 6
3 .Sxlo6 6.2

7 N 6.6xlo 6 i.66xio 7 i.39xlo 7

8 o 3"°x1°6
2.15xlo 7 2.44xlo 6

2.9xio 7
9 F 160o 2"36xlo 7

-- 104
10 _e 8.6xio6 3630

i. 7xlo 7

Ii Na I4 .38xI04 2,36xi06

4. iSxlo4
12 /,% 9.12xl05 6.32xi04

l.o_6xlo6
13 AI 9,48xi04 i.050xlO6

8.93xlo4
z4 si Z.ooxzo6 8.SLxlO4

i.oOxlO6
15 p i.00XI04 i.OOxlo 6

16 S 9320
3.75xi05 i. 27xi04

6 .0xlO5
17 Cl 8850 5.06xlo5

1836
18 Ar 1.4xlO 5 1970

2.4xZO 519 K
316o 2,28xlo5

2970

20 Ca 4.90xlO 4 7.28xlo 4 3240

21 Sc 28 7' 36x104
29

22 Ti 224o " 33
314o

23oo

1

2

3

3

3

1

1

1

4

2

4

5

5

5

5

4

4

6

4

5

5

5



Element

23 V

24 Cr

25 Mn

26 Fe

27 Co

28 Ni

29 Cu

30 Zn

31 Ga

32 Ge

33 As

34 Se

35 Br

36 Kr

37 Rb

38 Sr

39 Y

40 Zr

41 Nb

42 Mo

44 Ru

45 Rh

46 Pd

47 Ag

48 Cd

49 In

Suess

Urey

220

78oo

6850

6.ooxlo5

18oo

2.74xi04

212

486

ii.4

5o .4

4.0

67.6

13.4

51.3

6.5

18.9 I

8.9

54.5

1.00

2.42

i .49

0.214

0.675

o.26

o.89

0.ii
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Cameron

(1963)

590

i.20x]_o4

6320

8.42xiO5

2290

4.44xi04

861

.930

39

134

4.4

18.8

3.95

20

5.0

21

3.6

23

o.8].

2.42

1.58

o.26

i.oo

o.26

o.89

0.ii

Cameron

<i 67)

9oo

i. 24xi04

88oo

8.9oxlo5

2300

4.57xi04

919

15oo

45.5

126

'7.2

70.1

20.6

64.4

5.95

58.4

4.6

3o

1.15

2.52

1.6

0.33

1.5

0.5

2.12

0.217

Notes

7

5

4

5

5

5

4

4

.4

4

8

4

4

9

4

5

5

7

lO

3

3

3

ll

12

4

4



Element

50 Sn

51 Sb

52 Te

53 I

54 Xe

55 Cs

56 Ba

57 La

58 Ce

59 Pr

60 Nd

62 Sm

63 Eu

64 Gd

65 Tb

66 Dy

67 Ho

68 Er

69 Tm

7O Yb

71 Lu

72 Hf

73 Ta

74 w

75 Re

Suess

Urey

1.33

0.246

4.67

o.8o

4.0

0.456

3.66

2.00

2.26

o.4o

1.44

0.664

0.187

0.684

0.0956

0.556

o.ll8

o.316

o.o318

0.220

o.o5o

o._,38

0.o65

o.49

o.135
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Cameron

(1963)

1.33

o.15

3.oo

0.46

3.15

0.25

4.0

o.38

i.o8

0.16

0.69

0.24

0.083

o.33

0.054

0.33

0.076

0.21

o.o32

o.18

o.o31

0.16

O.021

0.ii

o.054

Cameron
(1967)

4.22

o.381

6.76

i .41

7.10

0.367

4.7

0.36

1.17

0.17

O. 77

0.23

o.o91

0.34

0.052

0.36

o.o9o

0.22

0.o35

0.21

0.035

o.16

O.022

o.16

0.055

Notes

4

4

4

4

13

4

5

5

5

5

5

5

5

14

14

5

5

5

5

5

5

3

15

iI

16



Element

76 Os

77 Ir

78 Pt

79 Au

8O Hg

81 Tl

82 Pb

83 Bi

90 Th

92 U

Suess

Ure7

1.00

o.821

i .625

o.145

o .284

o.io8

0.47

O. 144

-_89-

Cameron

0.73

O.5OO

1.157

0.i3

0.27

0.ii

2.2

O.14

0.o69

0.o42

Cameron

(i 7)

0.71

0.43

1.13

0.20

O.75

o.182

2.90

O. 164

0.034

O.0234

Notes

16

17

18

17

19

4

4

4

20

20
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Notes to Table I

i. In Cameron (1963) the Volatile elements are normalized to silicon = 106

in the sun, which is somewhat poorly determined. In Cameron (1967)

the normalization is based on logarithmic averages of Na, Mg, A1,

Si, S, K, Ca, Ti, Co, and Ni in the sun relative to meteoritic

values. The solar abundances are taken from Aller (1961).

2. He and Ne are normalized to the solar oxygen abundance using solar

cosmic ray data, as suggested by Gaustad (1964).

3. Based on abundances in chondrites, taken from Urey (1964).

4. Based on abundances in Type I carbonaceous chondrites, taken from

Larimer and Anders (1967).

5. Based on abundances in the Orgueil and Ivuna Type I carbonaceous

chondrites, taken frum Urey (1964).

6. Ar 36 was interpolated between S32 and Ca40.

7. Based on abundances in carbonaceous chondrites, taken from Urey

(196 ).

8. As 75 was interpolated between Ge73 and Se77.

9. Kr was assigned an abundance representing a cemprcmise between

interpolations of Kr84 between Se80 and Sr 88 and of Kr83 between

Br8_ and Rb 85 .

Nb 93 was interpolated between Zr91 and Mo 95 .

Based on abundances in Type I carbonaceous chondrites, private

communication from E. Anders.

Based on abundances in carbonaceous chondrites, taken from Larimer

and Anders (1967).

Isotopic abundances of Xe were based on those in the Murray

carbonaceous chondrite (Cameron 1962). The element was normalized

12.

13.



to Te and I to form a continuous abundance peak.

14. The abundances of Gd and Tb measured for Type I carbonaceous

chondrites are anomalous relative to the usual chondritic

pattern and have fairly large errors. Hence these abundances

were based on those in ordinary chondrites (Urey 1964) but

normalized to Sm.

15. The Ta abundance of 0.044 for carbonaceous chondrites (Urey

1964) appears too high relative to neighboring odd-mass nuclides.

The given value was interpolated between Hf 179 and W18B and is

in good agreement with values in ordinary chondrites.

16. Based on abundances in Type I carbonaceous chondrites, taken

frc_Morgan and Lovering (1967).

17. Based on abundances in Type I carbonaceous chondrites, taken

from Baedecker (1967).

18. The abundance of Pt was adjusted relative to Os, Ir, and Au to

form a continuous peak. The adopted value is slightly higher

than in Ordinary chondrites (Urey 1964).

19. The abundances of Hg in carbonaceous chondrites are anomalously

high and greatly variable. Hg was interpolated with as high

a value as seemed possible, specifically by interpolatingHg 199

and Hg201 between Au197 and T120B.

20. Abundances as of 4.5x109 years ago based on ordinary chondrltes,

taken from Urey (1964).
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Abundances of the nucl"
element abundan _ ,,_ ides cortes on "_ A .

n ,__j in Table _.

H

He

Li

C

N

0

__A

2

3

4

6

7

9

i0

ii

12

13

16

17

18

99.985

•015

7.42

92.58

ZOO

19.64

80.36

98.89

1 .ii

99.634

0.366

99.759

O.0374

0.2039

2.6xioIo

2.6xio Io

3.9x106

2. lxlo9

6.3xlO 5

2. lxlO 9

45

0.69

6.2

3.34

41 66

I.35xlo 7

2.44x106

2.36xio 7

1.22

4.98

1.33x107

1.50x105

2.44xlo 6

9000

2.36x107

88oo

4.-.8xlo 4



F

/re

A1

Si

P

8

28

29

3O

31

Cl

35

37

2O

21

22

23

24

25

a6

27

..293.,

100

90.92

0.257

8.82

100 ?

78.70

i0.13

ii.17

i00

92.21

4.70

3.09

1oo

32
95.0

33
0.760

34
4.22

36
O.0136 /_

3630

2.36xlo 6

6.3a_lo _

i.050x106

2.15xl

606O

2. OOxlc

8.26xlo 5

1,o6xlo 5

1.17xlo 5

9.22xi05

4.70xlO 4

3. o9x104

1970

4.80x_o 5

3.85xio 3

2.z4xlo4

69

149o

48o



V

36

38

_0

84.2

15.8

"0. OZ

Ca

93. I0

0.38

6.88

96.9?

0.6_

o.145

2.06

0.0o33

0.285

200

F

F

.P

33

2300

9o0

2.28xzo 5

32_0

2.gexlO_

3.6/x104

"20

7.36_204

3020

2_. 3

,2 3

7.2h2o 4

47o

207

2520

.43

136

2_

:[68

17o0

.7-27

3-23

2.2

898



Element

Cr

Mn

Fe

Co

Ni

Cu

Zn

A

5O

52

53

54

55

54

56

57

58

59

58

60

61

62

64

63

65

64

66

67

68

70
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_Abundance

4.31

83.7

9.55

2.38

]O0

5.82

91.66

2.19

0.33

i00

67.88

26.23

1.19

3.66

1.08

48.89

27.81

4.ii

18.57

0.62

Class

F

2O

Abundance

1.24xi04

8800

8.9Oxio5

2300

4.57xi04

919

1500

535

i.04xlO b'

i18o

297

5.19xlo 4

8.15xlO 5

1.95xi04

2900

3.lOxlO 4

1.2OxlO4

544

1670

494

635

284

732

417

61.8

278

9.3



Element

Ge

Ge

As

Se

Br

Kr

A

69

71

70

72

73

74

76

75

74

76

77

78

8o

82

79

81

78

80

82

83

84

86
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 Abund nce

20.52

27.43

7.76

36.54

7.76

i00

0.87

9.02

7.58

23.52

49.82

9.19

0.354

227

11.56

11.55

56.90

17.37

Class

S

F

B

S

F

B

Abundance

45.5

126

7.2

7o.1

27.5

18.O

25.8

34.6

9.77

46.0

9.77

20.6

64.4

O .61

6.32

5.31

16.5

34.9

6.44

i0.4

10.2

0.228

1.46

7.45

7.44

36.6

11.2



Element

Rb

Sr

Y

Zr

Nb

Mo

A

85

87

84

86

87

88

89

90

91

92

94

96

93

92

95

96

97

98

i00
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_Abundance

0.56

_f

9.00

7.02

82.56

lO0

51.46

11.23

17. Ii

17.40

2.8o

i00

15.84

9.o4

15.72

16.53

9.46

23.78

9.63

Class

B

F

B

B

S

F

Abundance

5.95

58.4

4.6

30

4.29

1.66

O. 327

_f

5.ro

4.1o

48.2

15. i

3.37

5.14

5.32

o.84

0.399

O.228

o.396

0.417

0.238

0.599

o.242



Element

Ru

Rh

Pd

Ag

Cd

A

96

98

99

lOO

lOl

lO2

lO4

lO3

lO2

lO4

lO5

lO6

io8

llO

107

109

lO6

lO8

iio

iii

112

113

.298-

_Abundance

5.51

1.87

12.72

12.62

17.o7

31.61

18.58

i00

0.96

10.97

22.23

27.33

26.71

ii.81

1.215

O.875

12.39

12.75

24.07

12.26

Class

B

B

S

F

B

S

F

B

B

S

1.6

0,33

1.5

0.5

2.12

Abundance

o.o88

0.030

0.204

0.202

0.273

0.505

0.297

o.o144

0.164

0.324

o.41o

o.4o0

0.177

0.257

0.243

o.o258

o.o186

0.262

0.270

o.51o

o.26o



Ei ement

In

Sn

•Sb

Te

A

i14

i16

i13

115

ll2

i14

115

116

117

i18

119

120

122

124

121

123

120

122

123

124

125

126

128

--299,,

,_Abundance

28.86

7.58

4.28

95.72

0.96

0.66

0.35

14.30

7.61

24.03

8.58

32.85

4.72

5.94

57.25

42.75

0.o89

2.46

0.87

4.61

6.99

18.71

31.79

Class

F

B

(B)

(B)

S

(F)

F

B

S

S

F

0.217

4.22

0.381

6.76

•Abundance

0.611

0.161

O.0O93

o.2o8

o.0405

O.0278

O.0148

0.603

0.321

1.01

O. 362

1.39

O. 199

0.250

o.218

0.163

0.0060

o. 166

0.059

o.312

o.472

1.27

2.3-5



Element

I

Xe

Cs

Ba

La

Ce

A

130

127

124

126

128

129

130

131

132

134

136

133

13o

132

134

135

136

137

138

138

139

_Abundance

34.48

I00

0.126

o.i15

2.17

27.5

4.26

21.4

26.0

lO.17

8.39

I00

O.lO1

0.097

2.42

6.59

7.81

•ii. 32

71.66

o.o89

99.911

Class

F

B

B

S

S

F

F

B

B

S

S

i.41

7.10

0.367

4.7

0.36

1.17

Abundance

2-33

0.00895

0.00816

o.154

1.95

0.303

1.52

1.85

0]721

o.595

O.00475

O.00455

0.114

0.310

0.367

0.532

3.37

0.00032

0.36

136 0.193 B 0.00226



Element

Pr

Nd

Sm

mu

Gd

A

138

14o

142

141

_|._

143

144

145

146

148

150

144

147

148

•i49

150

152

154

151

153

152

154

155

0.250

88.48

11.07

iOO

27.11

12.17

23.85

8.30

17.22

5.73

5.62

3.09

14.97

ii.24

13.83

7.44

26.72

•22.71

O.200

2.15

14.73

Class

B

F

S

F

F

S

S

F

0.17

O.77

0.23

0.091

0.34

Abundance

O. OO292

1.o35

o.129

0.209

0.0936

o.184

0.0640

o.133

o.o441

0.0433

O.OO71

0.0344

0.0259

0.0318

0..0171

0.0614

0.0522

O.O435

0.0475

o.ooo68

0.00731

O.0501



Element

Tb

Dy

No

Er

Tm

Yb

A

156

157

158

160

159

156

158

16o

161

162

163

164

165

162

164

166

167

168

170

169

168

17o

171

20.47

15.68 •

24.87

21.9o

i00

o.o524

o .o90'2

2.294

18.88

25.53

24.97

28.18

lO0

0.136

1.56

33.41

22.94

27.07

14.88

i00

0.135

3.03
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21.82
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Figure 16. I:

Figure 16.2:'

Figure 16.3:

Figure 16.4:

Figure 16.5:

Figure 16.6:

Figure Captions

Abundances of the nuclides plotted as a function of mass

number.

Abundances of nuclides which can be formed by neutron capture,

upwards from the iron peak region (in which all nuclides are

plotted). Symbols are explained in the text.

Continuation of Figure 16.2

Continuation of Figure 16.3

Continuat ion of Figure 16.4

Trends among heavy nuclei of abundances attributable to

neutron capture on fast and slow time scales and to

bypassed processes.
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17. Photobeta Reactions

Before examining the restrictions that abundance analysis

places upon the time scales associated with neutron capture we

shall consider a process called photobeta reactions*. This

process can influence the rate at which a nuclide can undergo

beta decay, and it is precisely these decay rates which allow

us to establish the time scales for the neutron capture process.

The basic idea behind the photobeta reaction is that nuclei

in the stellar interior will have an equilibrium distribution

of the populations of excited states which is weighted according

to the Boltzmann factor. Now if we have a fairly high excita-

tion energy in the nuclei, then it is generally true that the

excited states of the nuclei can beta decay to neighboring

nuclei at a faster rate than the ground states can decay.

In the laboratory situation this process is not important because

gamma emission is much faster than beta emission in the great

majority of cases, but in a star there is always an equilibrium

population of excited states, and then the photobeta process

can become important.

The fractional population of an excited state E. is
1

a i(E i) = (2Ji+ll exp(-Ei_f(T)
(17.1)

*A.G.W. Cameron, Astrophys.J., 13____0,2, p. 452.
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If the temperature

Now the question arises: Why do we call the beta decays from

the excited states "photobeta" reactions, since the nuclei

may be put into the excited states by collisions as well as

photon excitation? The rates of beta decay will be independent

of the particle density. They will be individual rates for

a given nucleus that depend only upon the nucleus being

bathed by black-body radiation at the appropriate temperature.

Although collisions may participate in changing nuclei among

the various excited states, their role is not an essential one.

Therefore the process is equivalent to entering the state by

a photon absorption and leaving the state by a beta transition

of some kind.

(17.2)

Ji is the total momentum of the state Ei-

isnot too high,

f(T) _ 2I + 1

where f(T) is the partition function for the nucleus and I

is the spin of the ground state. Only if the fractional

population of the low-lying excited states approach unity must

we use equation (17.I). Hence

(2Ji+l) exp(_Ei/kT )
ai(Ei) _ 2I + 1
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In general, the uncertainty principle gives

F
F_ =_= -

_. (17.3)

for the parameters of a given level of an excited nucleus,

where F is the total width at half maximum, 7 is the mean

life, and A the decay constant. Whenever we consider a

resonance involved in some kind of reaction, the reaction

rate is proportional to

F_, rnot

Ftotal

If F is the width for the beta transition and _ is
8 not 8

the width for all other transitions, we use

<< F
F8 not 8

so

Fnot 8 _ Ftot

and the reaction rate is approximately

and we may write

F

a

(37.4)

It should be noted that unless
8 << Fnot 8'

the method of

statistical equilibrium cannot be used. The neutrinos and

antineutrinos emitted in the beta transitions escape from the
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stellar interior, thus making the reactions irreversible.

Hence the method of statistical equilibrium can be used when

the beta-decays make only small pertubations to the nuclear

level formation and destruction rates.

Beta-transitions are characterized by a varying degree of

forbiddenness, depending on the angular momentum carried away

by the electron and the neutrino. "Allowed" transitions are

those in which the nuclear spin does not change by more than

one unit of angular momentum and the parity of the nuclear

states is the same. There follow a number of degrees of

"forbiddenness" in which successively larger changes of angular

momentum can take place and in which changes of parity and

no changes of parity alternate.

Beta-transition probabilities involve Fermi functions,

f(Z,E), where Z is the charge of the product nucleus (negative

for positron emission) and E is the energy available for the

transition. It has been found that the product of f(Z,E) and

the half-life t of the transition is very roughly constant

for any degree of forbiddenness of the beta-transition.

LOgl0 ft usually lies in the range 5-6 for allowed transitions

and 6-8 for first forbidden transitions.

outside these ranges are not uncommon.

However, values

The variations arise

through the variation in the individual nuclear matrix elements
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for the transitions. Transitions which are higher than first

forbidden are usually too slow to be of interest in photobeta

reactions.

For reasonably heavy nuclei (Z > 20) the Fermi function

can be calculated from relations given by Feenberg and Trigs

(1950). For electron and positron emission, it is

fof+ m <R(Z,W)> (Z,W)

(17.5)

where <R(Z,W)> is a slowly varying function plotted by

Feenberg and Trigg (lying in the range i-6)_ Z is the charge

of the product nucleus (negative for positron emission); and

2

W is the energy of the transition in units of moC = 0.51 mev,

including the rest mass of the electron. It should be remembered

that positron emission is possible only when the energy available

for the transition exceeds the energy threshold for creation

of a positron-electron pair_ or 1.02 mev.

The function fO can be written as the sum os three products,

as follows_

fo = Ulf01 + U2f02 + U3f03

For electron emission we have

Ul,Z , .= z
l-exp(-2_Z)

(17.6)

(17.7)
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u2(z) = -u12(z) exp(-2_aZ)

(i_.8)

and U 3(Z) = U 2(Z)[2_uZ - 3 + 2U I(-Z)]

(17.9)

i

where _ _ 137 is the fine structure constant. For positron

emission, the equations (17 .8) and (17.9) remain the same,

but equation 11.7 becomes

U 1 (-Z) = - 2_Z + UI(Z)

(17.7a)

where UI(Z)is as in equation(17._. Feenberg and Trigg (1950)

have tabulated these functions at convenient intervals. The

remaining functions in equation (17.6)are

1

f01 = 3-_ (W-l)S (Ws + 3W + 6)

1

f02 = 6 (W-l) 3

I

f03 = 8 (WS-i - 2W &nW)

(17.1o)

(i?.li)

(17.12)

Let us write

¢ = (ft)
(17.13)

to represent the transition constant for any given transition.

Then

X8 = _n_= Zn___22f= i
t C

(i7.14)
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Then

!"8 = (&n2) C f"
(17._5)

The total transition rate, PS' per nucleus is the sum of all

such transition probabilities multiplied by the fractional

populations of the corresponding states:

P8 = _ FSi ai (Ei)i

- (2I+i) I (2Ji+ i) c,
i i

• (17.16)

This equation may be used for either electron or positron

emission. In the more general case the statistical weight

(2I+1) should be replaced by the entire partition function.

Convenient expressions for the Fermi function for

electron capture from the K shell have been given by Major and

Biedenharn (1954) •

1

(17.17)

where Z is the charge of the capturing nucleus; W K is the

transition energy in units of moCS = 0.51 Mev, in which the

binding energy of the K shell should be taken into account

for greatest accuracy; and gK s is well approximated by

lOgl0 gK s = (7.9776-10) + 0.03256Z-10 (0"48775-0"0380236Z)

(17.18)
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Under astrophysical conditions in which photobeta reactions

are likely to be of interest, the temperature is sufficiently

high that the K shells of even very heavy elements are likely

to be ionized. Under such conditions the rate for the K

capture must be replaced by the rate for capture of the free

electrons. A very crude calculation of this rate follows.

The probability of finding a K electron inside the nucleus*

is

1 gZme
8

l dV =
(17.19)

where _ is the electron wave function; the integral is taken
e

over the nuclear volume; m is the electron mass; and VN is

the volume of the nucleus. For free electrons in the absence

of coulomb fields, if an electron is confined to a volume V,

the probability of finding it inside the nuclear volume is

VN/v. In the presence of a coulomb field this must be multiplied

by a coulomb function:

free
dV = VN , 2_

V l-exp (-2_)

(17,2o)

where,

Ze s

-- av (17.21)

*J.M. Blatt and V.F. Weisskopf, Theoretical Nuclear Physics, John

Wiley and Sons, New York, 1952, page 686.
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and v is the velocity of the free electron. In this expression

renormalization of the wave function is neglected.

If the electrons are non-degenerate, we may replace the

electron velocity in equation 11.21 by the average velocity:

<v> = _8k___T .)½
k_m

(17.22)

We shall identify the volume V with the volume occupied by one

electron in the stellar interior. Since under most conditions

of interest there are two atomic mass units per electron in

the stellar interior, then

3.32 x 10 -24
V = cm s ,

0

(17.23)

where _ is the density in grams per cubic centimeter.

For the relatively small electron velocities involved

in most non-degenerate conditions of interest, _ is sufficiently

large that the exponential part of the denominator in equation

(17.20)can be neglected compared to unity. •

The free-electron capture rate can then be written as

equal to the K capture rate multiplied by the probability of

finding a free electron inside the nucleus relative to the

probability of finding a K electron inside the nucleus.

Remembering that the atom normally contains two K electrons,

the free-electron capture probability becomes
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ke = 6x10 -3 @.-_
Z2 1K

(17.24)

where _K is the normal (i.e., laboratory) K electron-capture

rate.

The total rate of free-electron capture by the nucleus

is then given by equation 11.16, provided that fi is calculated

from equations (17,17), (17,18), and (17.24).

We shall now consider a number of individual cases which

will illuminate the details of the neutron capture theory.

i) Abundance of Kr 80

Kql_ I

(Shading refers to stable isotopes, arrows indicate decay paths).

The main capture path fom neutron capture on a slow time scale

passes through Se 78. What happens at Se797 It has a rather

long half-life in the laboratory, 7x104 years. If the mean

time required for a neutron capture is short compared to the

beta decay time of Se 79. then the capture path will continue

through Se 80. On the other hand, if this is not the

case then beta decay would give Br 79
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8O
and on the capture of a neutron the Br formed would beta

decay to Kr 80. We can examine the abundance of Kr 80 to see

whether it has an abundance comparable to the abundance of the

neighboring nuclei which are formed by neutron capture on a

slow time scale, or whether it has an abundance comparable to

the very much lower abundances of the neighboring nuclei which

have been by-passed entirely by neutron capture. We also

wish to see if the half-life of Se 79 will change when we take

possible photobeta reactions into account.

The abundance of Kr 80 seems to be of the order of half of

the abundance expected from neighboring even-even isobars that

are formed by neutron capture on a slow time scale, which we

will call half the "S" abundance. The abundance also happens

to be about 6 times that of neighboring nuclei that are by-passed

entirely and are presumably formed by the photonuclear reactions;

we call this 6 times the "B" abundance. Evidently this is an

intermediate case.

Consider the decay scheme:



The 7/2(+) to 3/2(-) transition is first forbidden while the

!(_) to 3/2(-) transition is allowed. Populating the excited
2

state may speed the decay rate.

T 8 _ 2.5

burning shell source in a massive star.

state,

log f = -0.9.

We estimate that for this allowed transition

So

and

decay to Br 79

log ft _ 5.5

log t _ 6.4

To calculate, we assume

excitation energy in a helium

Then, for the 0.096 Mev

Kr 862) Abundance of

tn -- 27 years.

and the effective half-life for Se 79 decay is

O,08 years = 27 years,
t% = 2.9x10_3

roughly. Since the abundance of Kr 80 is about _S, we may

estimate the neutron capture lifetime of Se 79. Thus

present.

t _ 0.08 yr. _ 1 month is the half-life for

if the first excited state were the only state

The population factor is, however,

a i = 2.9x10 -3
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Kr 86 has a ciosed shell of 50 neutrons. This is actually not

a pHoto-beta case since the excitation energy of the first excited

state is largeenough so that its population is very small, at

the temperatures which we consider. We discuss this in conjunction

with the other cases because of the information it gives concern-

ing the half-life of the neutron capture processes Kr 86 has

an abundance that is of the order of 1/20 to i/i0 of S (slow

time scale), and the order of 5 times the typical abundance in

the nefghborhood of the nuclei formed by neutron capture on a

fast time scale, i.e., 5"F". Apparently there is some neutron

capture in Kr 85. From the half-life involved and the relative

abundance of K 86 to that expected by different modes of formation,

we may estimate that the neutron capture lifetime is

t n - 150 years

(n0t temperature sensitive since we consider an ordinary beta

decay, not a photobeta reaction).

3) Abundance of Gd 152
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Sm150 lies on the sl_w time scale neutron capture path.

152
We are interested in the abundance of Gd to see if there is

branching of the neutron capture path, or if neutron capture

is very fast compared to 90 years so that the path goes through

152
Sm . The abundance of Gd152 is _ B, the abundance of bypassed

neighbors. The low lying states of Sm151 have unknown spins

and parities; we cannot estimate whether the 90 year half-life

is speeded by photobeta decay. We would not expect the half-

life to be greater than that of the ground state, so we get the

inequality

t << 90 yearsn

for the neutron capture lifetime in Sm151.

Although 90 years does not seem radically different from

14 years in terms of the relative abundances involved, the

cross section in this heavy rare earth region is very much larger

Se79than in a case such as . These values are not inconsistent

with prior results.

4) Abundance of Er 164

Iok
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The abundance of Er 164 is 1/3 that of its slow time scale

neighbors and 15 times that of its bypassed neighbors. Hence

164
the Er is apparently not bypassed as expected from first

impressions. We consider the energy level diagram of Dyl63:

163
The half life of the Ho decay to the ground state of Dy 163

is unknown. The transition energy is less than 0.03 Mev; for

purposes of calculation we will use 0.01 Mev. The excited states

163 163
of Dy can make allowed transitions to Ho . If we then

have neutron capture to form Ho 164, 55% of this will decay to

Er 164 This could explain the high abundance of Er 164.

log f

log ft

log t

t

a i

t½

0.075 State 0.116 State

-2.1 _ 0.9

5.0 _5.0

7.1 ,_5.9

0.4 yr _0.025 yr

4. ixlO -_ 7.6x10 -_

_9.6 yr -_ 33 yr



-328-

The total effective half life is

t½ : 7.5 years

It appears that we should expect half of the neutron capture

chain to go by way of Ho TM. Therefore, we say the half-life

for neutron capture is

t n

5) Abundance of Hf 176

7.5 years.

175
Lu lies on the neutron capture path. Lu 176 is one of the

rare exceptions in which beta decay from an excited state IS

faster than gamma decay to the ground state. The isomer has a

half-life of 3.7 hours; the ground state, 2x10 I0 years. Since

176 Hf 176 has an
Lu 175 is on the capture path, so must be Lu .

abundance of the order of 1/2 to 1 times the abundance of its

176

slow time scale neighbors. We conclude that Lu has necessarily

beta-decayed rapidly compared to neutron capture within Lu 176.

I-
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a i =

t½ =

>
t n

-5
5.5xi0

7,6 yr (photobeta)

7.6 yr (neutron capture)

We must have an appreciable amount of decay through Hf 176.

We have enough cases to suggest that the spread in the

numbers representing the neutron capture time scale is small.

In the Hf case we found a lower limit and in the Er case,

an upper limit. It seems the. data are more homogeneously

understandable if the spread in characteristic capture times has

not been too great around the values we have mentioned.

6) The technetium puzzle.

There is another l_hOtoheta reaction which does not explain

anything, but is instead a very considerable puzzle.

About i0 years ago Paul Merrill found lines of the

element Tc in the red giant stars of spectral class S. It has

subsequently been found that the abundances of all the heavy

elements of the S stars seem to be increased, and the abundance

of Tc seems comparable to that of its neighbors. It might

be expected that some process of neutron capture on a slow time

scale, taking place in the interior, has been responsible for

forming an overabundance of heavy elements in these stars. Then
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by some means, either a mixing of the material of the star or

a stripping away of the outermost layers, the material that has

been enriched in heavy elements comes to the surface. Tc has

97
no stable isotope. Tc has a half-life of 2.6xi06 years, and

is well shielded from the neutron capture path. Tc 99 has a

half-life of 2.1x105 years and is on the neutron capture

path. These half-lives are of the order of the time we expect

the more massive stars to spend in the red giant stage.

The level diagram for Tc 99 is

0.140 State

log f

log ft

log t

t

1.4

_5.5

_4.1

0.00043 yr

I. 23xi0 -3

,v 0.35 yr.

a i

t%

The total half-life is

0.081 State

1.8

_5.5

_3.7

_1.45xi0 -4 yr.

/vl.34x10 -4 yr

i. 08 yr.

t - 0.26 yrs.
½
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What does this mean? The formation of Tc 97 would require photobeta

reactions in the stable nucleus Mo 97, but there is no known

excited state of Mo 97 that would be suitable for that purpose.

The first excited state is 0.67 Mev, which is sufficiently high

to give an extremely small Boltzmann factor, and consequently

no significant decay to Tc 97 is expected. Not only that, but

the Tc 97 can have an enhanced'photobeta decay back to Mo 97.

Also, Tc 99 has a half-life that is very short compared to

typical neutron capture times that we have been discussing for

the sources that have given us the elements. We do not know

that type S red giant stars have made any massive contribution

of their elements to us, but if they have their contribution

would tend toward a spread in the high neutron flux or shgrt

neutron capture half-life. This strains the interpretations we

previously made. It is difficult to understand how improvement

will be made if we assume the log ft values are large. It is

possible, but unlikely. A flash in the neutron production

which locally speeds up capture might be a possible explanation,

but no very specific mechanism has been offered, and the puzzle

remains.

18 Heavy Ion Thermonuclear Reactions

After the exhaustion of helium, we find that C 12 and 016
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will participate in a series of thermonuclear reactions if the

temperature is sufficiently high. The theory for these reactions

is not as good as might be desired. One reason is that the

Bessel-Clifford expansion for the coulomb wave functions is no

longer applicable. Secondly, theoretical treatment of collisions

between heavy ions cannot make use of the same technique applied

to collisions between a light particle and a heavy nucleus.

For example it is not useful to speak of a C 12, nucleus moving

in the potential well of another C 12 nucleus. Again, when heavy

ions collide we will have contributions from a wider range of

momenta than previously. Besides the problems this raises in

summation over the range of angular momenta, the effects may

exhibit themselves in a more basic manner. For instance, the

12 C12C plus system seems to form a quasi-molecule, that is a

sort of dumbbell configuration in which the nuclear attractive

forces balance the electrostatic and centrifugal repulsive

forces. The cross section curve for the C 12 plus C 12 complex

has large wiggles which are probably the result of the formation

of these quasi-molecules. Our basic problem is to extrapolate

experimental cross-sections to low energies despite this gross

resonant structure of the quasi-molecules.

To add to our difficulties, the C 12 nucleus has a large spread
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in density at the edge. Consequently the problem does not

separate into pure coulomb and pure nuclear effects easily,

and our usual Wigner-Eisenbud formulation of nuclear reaction

theory does not work well with naive application*.

The following reactions can take place:

Reaction

C 12 + C 12 --4

Q

Mg 24 + y 13.930 Mev

Na 23 + p 2. 238

Ne 20 + _ 4.616

23
Mg + _ -2. 605

016 + 2_ -0. 114

These reactions will be taking place at a temperature of the

order of 700 million degrees, so a new feature appears: the

exothermic production of lighter charged particles, which we

expect to be rapidly reabsorbed on other nuclei. This makes

the whole process quite complicated. In general, capture in the

elements with low Z is favored. In particular,

Ne 20 (_,y) Mg 24

24
Na 23 (p,,y) Mg

have a high yield. Proton capture can form an abundance tail

*For a fuller treatment, see: A.G.W. Cameron, Astrophys. J. Vol. 130,

No. 2, p. 429, September, 1959.
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extending beyond Mg 24 but declining rapidly.

The reaction forming Mg 24 + y and that forming 016 + 26

can be shown to have negligibly small reaction rates. The

reactions forming p's and _'s should have comparable yields.

A recent estimate of the reaction rate due to Fowler and given

by Reeves is:

1/3
= 26 9 - _[I+0.08T9] 2

l°gl0 _ x12 f " T9 _ _ l°gl0T 9

This is uncertain by at least a factor of i0. Neutron emission

is sufficiently endothermic that we do not need to worry about

the direct effects of neutron emission, although some neutrons

are formed.

If we are near the beginning of the carbon burning process

the protons and alphas formed can react with C 12 by

CI2(p'y)NI3 (8+_) C13' _8 = 871 sec.

C 13 (_, _)016

The neutrons formed may add predominantly to the heavy nuclei

which, presumably, have already built up in the stellar interior

by (_,n) reactions. At higher temperatures the reaction

NI3(y,p)CI2 , Q = - 1.941 Mev

may occur faster than positron decay, in which case neutron

production by this means is blocked. The photodisintegration
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rate (calculated in a manner to be outlined later) gives:

Tp = 1.05xlO -15 exp _27; 45 >

We have

T9 7/(Ts+T p)

< 0.65 _ 1

-I
0.7 i0

_2 -
0.75 i0

where T is the lifetime for photonuclear ejection of a
P

proton and 78 is the lifetime for beta decay. At higher tempera-

tures the protons will be captured preferentially by the

heavier nuclei. Once blocking occurs, this ratio gives fairly

well the factor by which neutron production is decreased. The

presence of neutrino emission may raise the temperature and

accentuate this effect.

Now we consider oxygen burning.

Reaction Q

016 + 016 , S 32 + y 16.539 Mev

31
P + p 7.676

Si 31 + n 5.417

Si 28 + _ 9.593

24
Mg + 2_ -0. 393

Si 30 + 2p 0.424
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Of the most important reactions, it is probable that protons

and alphas have comparable yields while neutrons have a some-

The reaction rate (again due to Fowler)what smaller yield.

gives

59.04 r 1/3 2

--_ = 38.0 _9 I_3LI+0"08T93 - --l°gl0 _Xl6f 3 l°gl0T9

The reactions will take place at T 9 _ 1.5 but, as we shall see,

they are strongly dependent on the neutrino emission effects.

The protons, alphas and neutrons formed by these reactions are

Si 28 S 32rapidly recaptured. The main products are , , and other

nuclei in the range A _ 36. Neutrons will be of limited

usefulness in neutron capture on a slow time scale because (Y,n)

reactions will block the flow at points of low neutron binding

energy. So we see that after heavy ion thermonuclear reactions

large amounts of Mg 24, Si 28, S 32 and lesser amounts of their

neighbors are formed.

19. Photonuclear Reactions

We shall now discuss the subject of photonuclear reactions

briefly. Consider the equilibrium between two constituents with

number densities n I and n s and their compound nucleus nls:

T3/2 VkT
= _ _ ek___j3/2

nls k m I + m s _ wle
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where the w's are statistical weights and X is the energy

of the compound state above the sum of masses of the

constituents. Now, the probability of ph0todisintegration per

unit time is k n_ while the probability of formation per unit

time is

r = n_ n_ <_v> = q n I ns

in our previous notation. In equilibrium, the rate of formation

equals the rate of disintegration so

knle = qnln 2

k = q (n__n__)

3/2 -0. 0116 x/T6AIA-2 h 3/2 W--lW--_-- <CV> T_ e
= 1"89Xi029 _+A;_ w_ 2

2O

We will apply this to the case of photodisintegration of Ne .

Ne20(7,_) 016 , Q = - 4.730 Mev

From our previous examination of the inverse reaction, we know

that the excited state of 4.97 Mev in Ne 20 does not act as a

resonance for _ capture to form Ne 20, but that the two higher

states do. In this case we have contributions from these two

levels.

5.64 Mev level:

5.80 Mev level:

lOgl0 p = 13.40 - 29.3/T9 + (factor of i0)
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We will have Ne20(y,_)O 16 taking place near T -- 1.3
9

or at a slightly lower temperature than for oxygen burning.

The alpha particles will be captured mainly by Ne 20 since the

reaction

016 (_, y)Ne 20

merely undoes the work of the photodisintegration reactions.

Thus the main products will be 016 and Mg 24.


